Reg. No.:						

Question Paper Code: U3906

M.E. DEGREE EXAMINATION, NOV 2023

Professional Elective

Power Electronics and Drives

21PPE506- MODERN RECTIFIERS AND RESONANT CONVERTERS

		21PPE506– MODERN RECTIFIERS AND RESONANT CONVI	ERTERS						
		(Regulations 2021)							
Du	ration	num: 100 Marks							
		Answer ALL Questions							
PART - A (5 x $20 = 100 \text{ Marks}$)									
1.	(a)	Discuss the AC line current harmonic standards IEC 1000-IEEE 519 in detail.	CO1- U	(20)					
		Or							
	(b)	Briefly explain about Average power-RMS value of a waveform-Power factor in harmonic analysis.	CO1- U	(20)					
2.	(a)	Analyze the Modeling losses and efficiency in CCM high quality rectifiers.	CO2- Ana	(20)					
		Or							
	(b)	Analyze the solution for converter to increase the Efficiency η .	CO2- Ana	(20)					
3.	(a)	Identify and Analyze the two commonly used control method for power supplies?	CO3- Ana	(20)					
		Or							
	(b)	Discuss the different types of Slope Compensation to Correct Problems in Current Mode control method?	CO3- Ana	(20)					
4.	(a)	Describe in detail about state space averaged model for an ideal buck converter.	CO4- U	(20)					
Or									
	(b)	Write short notes on	CO4- U	(20)					

(i) Review of linear system analysis (10 marks)

(ii) State space averaging (10 marks)

- 5. (a) Identify the controller specifications for design of controller. CO5- App (20)
 - (b) Draw a block schematic and explain the principle of operation of CO5- App (20) linear power supplies. What are the main shortcomings and applications?