Reg. No. :
 Question Paper Code: U3021

 B.E./B.Tech. DEGREE EXAMINATION, NOV 2023

Third Semester

Mechanical Engineering

21UMA321- PROBABILITY, STATISTICS AND PARTIAL DIFFERENTIAL EQUATIONS

(Regulations 2021)

 $(t,f,x^2 \text{ table has to be given})$

Duration: Three hours

Maximum: 100 Marks

Answer All Questions

PART A - (10x 1 = 10 Marks)

1.	The degrees of freedo distribution	om for chi square te	sts to fitting a binomi	ial CO6- U
	(a) n – 1	(b) n – 2	(c) $n - 3$	(d) n – 4
2.	Small sample size is			CO6- U
	(a) 30	(b) > 30	(c) < 30 (d) N	lone of these
3.	What must we include w	when reporting an ANOV	/A?	CO6 -U
	(a) Standard deviations	(b) Means (c) Degr	rees of freedom (d) All	l of these
4.	In factorial experiments.			CO6- U
	(a) Testing one factor at	a time ((b) Cannot estimate intera	actions
	(a) Testing one factor at	a time ((b) Cannot estimate intera	actions
5.	If X is exponentially is	distributed with param	neter 3 then mean val	ue CO3- App
	(a) 1/3	(b) 3	(c) 1/9 (d) None of	these
6.	If X and Y are independent	ent, then $Cov(X, Y) =$		CO3 -App
	a) 1	b) 0	c) 2	(d) 3
7.	The PDE obtained from	z = (x + a) (y + b) is		CO4- App
	(a) $3z = px + qy$	(b) $z = pq$	(c) $3z = px - qy$	(d) $py - qx = 0$

8.	The PDE of all planes having equal intercepts on the X axis and Y axis is - CO4 - App									
	(a) p	= q	(b) I	(d)	p + 3q = 0					
9.	A Class	CO6 - U								
	(a) para	abolic	(b)hy	perbolic	(c)elliptic	(d)	cyclic			
10.	The on	e dimensio	nal heat equat	ion is			CO6 U			
	(a) U _{xx} =	$=C^2U_t$	(b) U	$xx = C^2 U_{tt}$	(c) $U_{xx}=CU_t$	(d) $U_x = CU_{tt}$				
			PA	ART - B(5)	x 2= 10Marks)					
11.	What are null and alternate hypothesis?.									
12.	. What is the aim of design of experiments?									
13.	Find t	he mean fo	or the discrete	RV X with	probability distribution		CO3- App			
		X	-2 -1	0 1						
		P(0.2 3k	0.2 0.3	3					
14.	Solve	$(D^3 - 3L)$	$\begin{array}{c c} 0.2 & 3k \\ \hline DD'^2 + 2D'^3 \end{array} Z$	T = 0.			CO4 -App			
15.	Classi	fy the p.d.	$e 3u_{xx} + 4u_{xy} -$	$+ 3u_y - 2u_x =$	= 0		CO6- U			
				PART – C	(5 x 16= 80Marks)					
16.	(a)	(i) Two ra	ndom samples	s gave the fo	ollowing results:	CO1-	App (8)			
		Samples	Size	Sample	Sum of the squares of					
		1	10	Mean	deviation from the mea	an				
		1	10	15	90					

Examine whether the samples come from the same normal population.

14

2

12

(ii) Two independent samples of sizes 9 and 7 from a normal CO1- App (8) population had the following values of the variables.

108

Sample I	18	13	12	15	12	14	16	14	15
Sample II	16	19	13	16	18	13	15	-	-

Do the estimates of the population variance differ significantly at 5% level?

Or

(b) (i) 4 coins were tossed 160 times and the following results were CO1- App (8) obtained:

No. of heads:	0	1	2	3	4
Observed frequencies:	17	52	54	31	6

Under the assumption that the coins are unbiased, find the expected frequencies of getting 0, 1, 2, 3, 4 heads and test the goodness of fit.

(ii) Two sample polls of votes for two candidates A and B for a CO1- App (8) public office are taken one from among residents of rural areas. The results are given below. Examine whether the nature of the area is related to voting preference in this election.

Area/Votes for	А	В	Total
Rural	620	380	1000
Urban	550	450	1000
Total	1170	830	2000

17. A company appoints 4 salesmen A, B, C and D and observes CO2 - Ana (a) (16)their sales in 3 seasons, summer, winter and monsoon. The figures are given in the following table: Salesmen 1 2 3 4 Season

Summer	45	40	28	37				
Winter	43	41	45	38				
Monsoon	39	39	43	41				
Carry out an Analysis of variances.								

Or

In a Latin square experiment, the data collected is given in the CO2- Ana (b) (16)matrix below Yield per plot is given in quintals for the five different cultivation treatments A, B, C, D and E. Analyze the for variations. data

A48	E66	D56	C52	B61
D64	B62	A50	E64	C63
B69	A53	C60	D61	E67
C57	D58	E67	B65	A55
E67	C57	B66	A60	D57

18.

(a) (i) Obtain the Correlation coefficient for the following data

Х	12	15	17	18	23	16	25	27
Y	110	120	124	130	136	122	140	143

(ii) Explain the M.G.F of Binomial distribution and hence find CO3- App (8) mean and variance.

	Or											
(b)	(i) A r.v X has the following probability distribution										CO3 -App	(8)
	Х	-2	-	1	0		1					
	P(x)	0.1]	k	0.2	2	2k	0.3	3	k		
	Find (i) Value of k, (ii) Find $P(-2 < X < 2)$ and (iii) Find the											
	cumula	tive di	stribu	tion of	f X.							
	(ii) A H	RV XI	nas the	e follo	wing di	stribu	tion				CO3 -App	(8)
	X	0	1	2	3	4	5	6	7	8		
	P(x)	а	3a	5a	7a	9a	11a	13a	15a	17a		
	(a) Find the distribution function of x										-	
	(b) Find $P(X \ge 3 / X > 7)$											
	(c) Fin	d Mear	l									

19. (a) (i) Solve
$$(D^2 - 5DD' + 6D'^2)z = e^{x+y} + sin(x-y)$$
 CO4 -App (8)

(ii) Solve
$$x(y-z) p + y(z-x) q = z(x-y)$$
 CO4 -App (8)

(b) (i) Solve $z = px + qy + p^2 - q^2$ CO4- App (8)

(ii) Form a PDE by eliminating arbitrary functions from CO4- App (8) $\varphi(x^2 + y^2 + z^2, x + y + z) = 0$

20. (a) A bar of 10cm long with insulated sides has its ends A and B CO5- App (16) kept at 50° c and 100° c respectively. Until steady state condition prevails. The temperature at A is then suddenly raised to 90° c and at the same instant B is lower to 60° c and maintained thereafter. Find the subsequent temperature distribution in the bar.

Or

(b) A String is stretched and fastened to two points l apart .Motion CO5-App (16) is started by displacing in to the form λ (lx-x²) from which it is released at t=0.Find the displacement of any point at a distance 'x' at any time 't'.

CO3- App (8)

U3021