A	
Δ	

(a) force per unit area

(c) force per uint volume

Reg. No.:					

Question Paper Code: 93704

B.E./B.Tech. DEGREE EXAMINATION, NOV 2023

Third Semester

Mechanical Engineering

19UME304- FLUID MECHANICS AND MACHINERY

(Regulation 2019)

	(1cgu	1411011 2017)				
Dur	ation: Three hours		Maximum: 100 l	Marks		
	Answer A	ALL Questions				
	PART A - (1	$10 \times 1 = 10 \text{ Marks}$				
1.	In one dimensional flow, the flow			CO1- R		
	(a) Is steady and uniform	(b) takes place in straight line				
	(c) takes place in curve	(d) takes place in one direction				
2.	Reynolds Number for laminar flow is			CO1- R		
	(a) $Re > 4000$ (b) $Re = 2000$ to 400	0 (c) Re ≤ 2000	(d) None of the ab	ove		
3.	The coefficient of viscosity may be deter	rmined		CO2- R		
	(a) Capillary tube method	(b) Orifice tube visco	meter			
	(c) Rotating cylinder method	(d) All of these				
4.	A monometer is used to measure			CO2- R		
	(a) Low pressure	(b) Moderate pressure				
	(c) High pressure	(d) Atomospheric p	oressure			
5.	Dynamic viscosity (µ) has the dimension	is as		CO3- R		
	(a) MLT^{-2} (b) $ML^{-1}T^{-1}$	(c) $ML^{-1}T^{-2}$	(d) $M^{-1}L^{-1}T^{-1}$			
6.	Surface tension has the units of			CO3- R		

(b) force per uint length

(d) none of the above

7.	is the electric power obtained from the energy of the water.							
	(a) R	Roto dynami	ic power	(b) Thermal pow	(b) Thermal power			
	(c) N	Juclear pow	rer	(d) Hydroelectric	(d) Hydroelectric power			
8.	The speed ratio in case of francis turbine varies from						CO4- R	
	(a) 0	.15 to 0.3	(b) 0.4 to 0.5	(c) 0.6 to 0.9	(d) 1 t	to 1.5		
9.	Slip	Slip of a reciprocating pump is defined as the						
	(a) R	Ratio of actu	al discharge to the the	eoretical discharge				
	(b) S	(b) Sum of actual discharge and the theoretical discharge						
	(c) I	(c) Difference of theoretical discharge and the actual discharge=						
	(d) F	Product of the	neoretical discharge a	nd the actual discharge				
10 The specific speed of a centrifugal pump, delivering 750 litres of water per second against a head of 15 metres at 725 r.p.m is							CO5- R	
	(a) 2	4.8 r.p.m	(b) 48.2 r.p.m	(c) 82.4 r.p.m	(d)	248 r.p.m		
			PART –	B (5 x 2= 10 Marks)				
11	Defi	ne specific	weight with its units.				CO1- U	
12	State Bernoulli's equation and its assumptions						CO2- U	
13	Defi	ne dimensio	onal homogeneity				CO3- U	
14	Define Turbine						CO4- U	
15	5 Write the classification of Pumps.						CO5- R	
			PART	– C (5 x 16= 80 Marks)				
16	(a)	$(3/2)y - y^3$ meter above	3/2, where u is the po	over a flat plate is give pint velocity in m/s at a coine the shear stress at poise.	distance y	CO1-App	(16)	
			(Or				
	(b)	lubrication inclined plate square plate	between a square plane with angle of interest terms and it slide	sity of oil, which is late of size 0.8m X 0.8 aclination 30°. The weiges down the inclined plathickness of the oil film	m and an ght of the ane with a	CO1-App	(16)	

17 (a) The water is flowing through a pipe having diameters 20cm and CO2-App (16) 15cm at sections 1 and 2 respectively. The rate of flow through pipe is 40 liters/sec. The section-1 is 6m above the datum and section-2 is 3m above the datum. If the pressure at section-1 is 29.43 N/cm2, find the intensity of pressure at section-2.

Or

- (b) Derive Bernoulli's Equation from Euler's Equation with a neat CO2-App (16) sketch.
- (a) The efficiency (η) of a fan depend on density (ρ), dynamic CO3-App viscosity (μ) of the fluid, angular velocity (ω), diameter (D) of the rotor and discharge (Q). Express η in terms of dimensionless parameters. Using Buckingham's π theorem

Or

- (b) The resisting force (R) of a supersonic plane during flight can be CO3-App considered as dependent upon the length of aircraft (l), velocity (V), dynamic viscosity of air (μ), air density (ρ) and bulk modulus of air (K). Express the functional relationship between these variables and the resisting force using Buckingham's π Theorem.
- 19 (a) A Pelton Wheel has a mean bucket speed of 10m/s with a jet of CO4-App (16) water flowing at the rate of 700lit/s under a head of 30m. The buckets deflect the jet through an angle of 160°. Calculate the power delivered to the runner and the hydraulic efficiency of the turbine. Assume co-efficient of velocity at 0.98.

Or

(b) A Pelton Wheel is to be designed for the following specifications: CO4-App Shaft power = 11772KW, Head = 380m, Speed = 750rpm, Overall Efficiency = 86%, Jet diameter is not to exceed one-sixth of the wheel diameter. Determine (i) The wheel Diameter (ii) The number of jets required (iii) Diameter of the jet.

20 (a) Derive and Explain the working principle of Single stage CO5-App (16) . Centrifugal Pump with neat sketch

Or

(b) A centrifugal pump having outer diameter equal to two times the CO5-App inner diameter and running at 1000 rpm. Work against a total head of 40m. The velocity of flow through the impeller is constant and equal to 2.5 m/s. the vanes are set back at an angle of 40° at outlet. If the outer diameter of the impeller is 500mm and width at outlet is 50mm. Determine (i) vane angle at inlet, (ii) work done by impeller on water per second, (iii) manometric efficiency.