Λ	
\Box	

Reg. No.:

Question Paper Code: 53703

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023

Third Semester

Mechanical Engineering

15UME303 - ENGINEERING THERMODYNAMICS

(Regulation 2015)

		(Regui	ation 2013)	
	(Stear	m table Mollier chart and	d Psychrometric chart Per	mitted)
Dur	ation: Three hours		N	Maximum: 100 Marks
		Answer A	LL Questions	
		PART A - (10	x 1 = 10 Marks	
1.	Which of the follo	owing is an intensive pro	pperty of a thermodynamic	c system CO1- R
	(a) Volume	(b) Temperature	(c) Mass	(d) Energy
2.	The absolute zero	temperature is taken as		CO1- R
	(a) -273° C	(b) 273 K	(c) 237^{0} C	(d) -237 K
3	Carnot cycle has a	maximum efficiency		CO2- R
	(a) Petrol engine	(b) Diesel engine	(c) Reversible engine	(d) Irreversible engine
4.	The increase in er	ntropy of a system repres	sent	CO2- R
	(a) Increase in ava	ailability of energy	(c) Decrease in temp	perature
	(b) Increase in ter	nperature	(d) Degradation of e	energy
5.	Cycle used in the	rmal power plants is		CO3- R
	(a) Carnot cycle	(b) Reversed Carnot c	ycle (c) Rankine cycle	(d) Brayton cycle
6.	Dryness fraction of	of dry steam is		CO3- R
	(a) 0	(b) 1	(c) 2	(d) 3
7.	Following relation	nship defines the Gibb's	free energy G	CO4- R
	(a) G=H+TS	(b) G=H-TS	(c) $G=U+TS$	(d) $G=U+PV$

ο.	IIIC	mai energy and enthalpy of an idie ga	as are function of	CO4- K
	(a) 7	Temperature only	(b) Pressure only	
	(c) T	Temperature and pressure	(d) Pressure, temperature and specific v	olume
9.	Dur	ing sensible cooling,		CO5- R
	(a) I	Relative humidity remains constant		
	(b) '	Wet bulb temperature increases		
	(c) S	Specific humidity remains constant		
	(d) I	Partial pressure of water vapour rema	ins constant	
10.	The calle		erature and dew point temperature is	CO5- R
	(a) I	Ory bulb temperature ((b) Wet bulb temparature	
	(c) I	Dew point depression ((d) Wet bulb depression	
		PART – B (:	5 x 2= 10 Marks)	
11.	Wha	at are the assumptions made while de	riving steady flow energy equation?	CO1 R
12.	State	e clausius inequality.		CO2 R
13.	Define dryness fraction of system.			CO3 R
14.	Define Joule – Thomson coefficient.			
15.	Nan	ne any four psychrometric properties.		CO5 R
		PART – C	C (5 x 16= 80Marks)	
16.	(a)	5 kg of air at 40°C and 1 bar is he constant pressure process until the v (i) Charge in volume (ii) Work done (iii) Change in internal energy (iv) Change in enthalpy	eated in a reversible non flow CO1- Aprolume is doubled. Find	op (16)
		Or		
	(b)	Steam enters a turbine at a velo enthalpy is 2900 KJ/Kg.At the exvelocity is 30 m/s, and specific enth lost during the flow through the testeam flow rate is 85 Kg/s. Determine	halpy is 2400 KJ/kg. The heat turbine is 20 KJ/Kg, and the	op (16)

turbine.

17.	(a)	Two Carnot engine A and B are operated in series. The first one A receives heat at 870 k and rejects to a reservoir at temperature T. The second engine B receives the heat rejected by the first engine and in turn rejects to a heat reservoir at 300k.Calculate the temperature T in 0 C for the following cases: (i) The work output of the two engines are equal.	CO2- App	(16)
		Or		
	(b)	A reversible heat engine operating between two reservoirs at 900 k and 300 k the engine drives a reversible refrigerator operating between reservoirs 300 k and 250 k the heat engine receives 1800 KJ from 900 K reservoir the net output from combined engine refrigerator 360 KJ find the heat transfer to the refrigerator and the net heat rejected to the reservoir at 300 K.	CO2- App	(16)
18.	(a)	A cylinder contains 150 liters of steam at 400 Kpa and 0.5 dry. The steam is compressed hyperbolically to 0.06 m ³ . Find: mass of vapour, the final dryness fraction and the heat transferred.	CO3- Ana	(16)
		Or		
	(b)	In a steam power plant steam at 20 bar,350°C is expanded in a steam turbine to 0.1 bar. It then enters a condenser, where it is condensed to saturated liquid water. neglect pump work find the cycle efficiency.	CO3- Ana	(16)
19.	(a)	A mixture of ideal gases consists of 2.5 kg of N ₂ and 4.5 kg of CO ₂ at a pressure of 4 bar and a temperature of 25 ⁰ C. Determine (i) Mole fraction of each constituent (ii) Equivalent molecular weight of the mixture (iii) Equivalent gas constant of the mixture (iv) The partial pressure and partial volume	CO4- U	(16)

Or

(v) The volume and density of the mixture.

(b) Obtain expressions of Maxwell equations. CO4- U (16)

20. (a) Atmospheric air at a dry bulb temperature of 16^oC and 25 % RH CO5-U passes through a furnace and then through a humidifier, in such a way that the final dry bulb temperature is 30^oC and 50% RH. Find the heat and moisture added to the air.

Or

(b) Explain the various psychrometric process in detail. CO5- U (16)