4

Reg. No.:					

Question Paper Code: 99707

B.E./B.Tech. DEGREE EXAMINATION, NOV 2023

Elective

Mechanical Engineering

	19U	ME907– RENEWABL	E SOURCES OF ENERGY	7					
(Regulation 2019)									
Dura	ation: Three hours		Maxin	Maximum: 100 Marks					
	Answer ALL Questions								
	PART A - $(10 \times 1 = 10 \text{ Marks})$								
1.	The solar cell effic	iency is about			CO1- U				
	(a) 25%	(b) 15%	(c) 48%	(d) 63%					
2.	2. The single solar cell voltage is about								
	(a) 0.2 V	(b) 0.5 V	(c) 1.0 V	(d) 2.0 V					
3.	Which of the follow	wing is the energy used	d for storing Wind energy?		CO1- U				
	(a) Kinetic	(b) Potential	(c) Electrical	(d) Chemical					
4.	Which of the follotype wind turbine?	•	ed in controller of vertical		CO1- U				
	(a) Meter	(b) Motor	(c) Sensor	(d) All th	e above				
5.	The bio-ethanol ob	tained in the fermentat	tion process has	_ purity	CO1- U				
	(a) 99%	(b) 99.2%	(c) 99.4%	(d) 99.7%)				
6.	is calle	ed as the bio gas.			CO1- U				
	(a) Bioethanol	(b) Biomethane	(c) Biodiesel	(d) Biobu	tanol				
7.	What is the primar	y source of heat for ge	othermal energy Generation	1?	CO1- U				
	(a) Solar radiation		(b) Fossil fuels						
	(c) Nuclear fusion		(d) Earth's interior heat						

8.		at type of tide atest?	is it if the differ	rence bet	tween high and low t	tide is	CO1- U	
	(a) I	Diurnal tide	(b) Neap tide	(c)	Spring tide	(d)	Ebb tide	
9.	Whi	ich of the follo	wing use hydroger	as fuel?			CO1- U	
	(a) I	Fossil fuels	(b) Anerobic dige	estion	(c) Fuel cells	(d)	Cooking	
10.	Wha	at does hydrogo	en fuel cell emit?				CO1- U	
	(a) V	Water	(b) Steam	(c)	Greenhouse gas	(d)	Methane	
			PART – I	3 (5 x 2=	10Marks)			
11.	Exp	lain the various	s types of Solar En	nergy.			CO1-U	
12.	Out	atline the wind energy. CO2- U						
13.	Sun	nmarize the thr	ee major designs o	of fixed b	ed gasification.		CO3- U	
14.	Dist	inguish betwee	en open-cycle and	closed-cy	ycle OTEC systems.		CO4- U	
15.	Disc	cuss the variou	s parts of Fuel cell				CO5- U	
			PART -	- C (5 x 1	16= 80Marks)			
16.	(a)	Conversion	working process System with n nd exploring applie	eat ske	lar Thermal Energy tch advantages and		(16)	
	(b)	heating system	m, including the l	key comp	lectors in a residential conents and processes backs or limitations.		(16)	
17.	(a)	•	ve roles in convert	ing wind	vind mill and explain energy into electricity		(16)	
	(b)	-		ing proc	esses, advantages, and wnwind turbines.	CO2- U	(16)	
18.	(a)		entire working probenefits and drawb	oacks	biodiesel production,	CO3- U	(16)	

- (b) Explain the complete working process of biomass energy CO3-U (16) generation, from feedstock collection to electricity production, and discuss the key components involved. Discuss the social benefits and drawbacks biomass energy generation.
- 19. (a) Explain in detail the working principles of a closed Cycle CO4-U (16) OTEC system. Discuss the main components and their functions.

Or

- (b) Describe the working process of a double Basin One-Way CO4-U (16) Cycle tidal power plant, Double Basin Two-Way Cycle with Pump Storage tidal power plant. Discuss its advantages, applications, and disadvantages.
- 20. (a) Discuss various hydrogen storage technologies, including CO5-U compressed gas, liquid hydrogen, and solid-state storage. (16) Explain their suitability for different applications.

Or

(b) Explore the design and operation of molten carbonate fuel CO5-U (16) cells. Discuss their suitability for high-temperature applications and their potential in power generation.