A		Reg. No. :									
		Question Pape	er C	ode	: 997	05]				
	B.E./B.T	ech. DEGREE EX.	AMI	NAT	ION,	NOV	202	3			
		Elec	tive								
		Mechanical	Engi	neerii	ng						
	19UME90	5– COMPUTATIO	ONA	L FL	UID	DYN	AMI	CS			
		(Regulatio	ons 2	019)							
Dur	ation: Three hours						Ν	laxir	num	100	Mai
		Answer ALI	Qu	estion	15						
		PART A - (10 x	1 =	10 M	larks)						
1.	Flow in which each partic	cle of fluid follows	an i	rregu	lar pa	th is					CO
	(a) laminar flow (b) turbulent flow	(c)	mixe	ed flo	W			(d) c1	OSS	flow
2.	When a direct computation terms of known quantities	tion of dependent s, computation is s	vari aid to	ables o be	can	be m	ade	in			CO
	(a) implicit (b) explicit	(c)	uniq	ue				(d) de	epen	dent
3.	Navier-stokes equation is useful in analysis of								CO		
	(a) viscous flow (b) not	n viscous flow	(c)	Turt	oulent	flow			(d) N	one	of th
4.	Quadrilateral mesh is mo	st common in									CO
	(a) Structured mesh		(b)	unstr	ucture	ed me	sh				
	(c) Dirichlet mesh		(d)	None	e of th	ese					
5.	Discretization technique	is									CO
	(a) Finite volume (b) Finite difference	(c)	Finit	te elei	nent			(d) A	ll of	thes
6.	Triangular mesh is comm	ion in									CO
	(a) Structured mesh (b) unstructured mes	h	(c)	Diric	nlet m	lesh		(d) N	one	of th
7.	Ratio of flow inertia to ex	ternal field is calle	ed								CO
	(a) Froude number		(b)) Mac	h nur	nber					
	(c) Reynolds number		(d)) cavi	tation	num	ber				

8.	Representation of finite difference derivative is based on				CO1- U				
	(a)]	Taylor series expansion	(b) Newton's 2nd law						
	(c) I	Fredrick law	(d) None of these						
9.	Inve	rse of Euler number is		(CO1- U				
	(a) I	Reynolds number	(b) Mach number						
	(c) I	Ruark number	(d) cavitation number						
10.	Ben	(CO1- U						
	(a) laminar flow (b) turbulent flow								
	(c) I	(c) Both laminar and turbulent (d) None of these							
		PART – B (5 x 2	2= 10Marks)						
11.	Define control volume.				CO1- U				
12.	How to improve the accuracy of Finite Difference solutions?			CO1- U					
13.	. Define Discretization.				CO1- U				
14.	Define Froude Number				CO1- U				
15.	Define Staggered Grid.				CO1- U				
	PART – C (5 x 16= 80Marks)								
16.	(a) Derive the momentum equation for a 3D compressible flow			CO3 -App	(16)				
	 Or (b) Identify the nature of the following systems of partial differential equations ∂u/∂x=∂v/∂y=∂u/∂y=where u and v are the two dependent variables 			CO3 -App	(16)				
17.	(a)	 (a) Develop the Elliptic equations using Finite Difference Solution methods. 		CO3- App	(16)				
	(b)	Derive the Accuracy of Finite Difference	ce Solutions	CO3 -App	(16)				
		·							
18.	(a)	(a) Derive the FVM for 1D Steady State Diffusion. Or			(16)				
	(b)	Clarify Implicit method for 2D and 3 discretization for transient convection di	D scheme and derive the iffusion equation.	CO3- App	(16)				

19.	(a)	Discuss in detail about the role of QUICK scheme and its variants	CO4 -App	(16)
		in numerical analysis		
		Or		
	(b)	Derive and explain Steady 1D Convection and Diffusion.	CO4- App	(16)
20.	(a)	Discuss and derive SIMPLE Algorithm. Or	CO5 -App	(16)
	(b)	Derive Strain Sensitivity: RNG k-€ model.	CO5 -App	(16)