Reg. No.:										
-----------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 98623

B.E./B.Tech. DEGREE EXAMINATION, NOV 2023

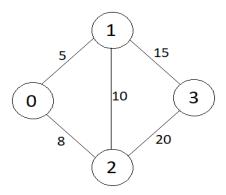
Sixth Semester

Information technology

19UIT623- OBJECT ORIENTED PROGRAMMING & DATA STRUCTURES

(Regulations 2019)

Duration: Three hours Maximum: 100 Marks


Answer All Questions

PART A - $(10x 2 = 20 \text{ Marks})$							
1.	List the concepts of OOPs.						
2.	Differentiate Identifiers and Keywords with an example						
3.	3. Define Data Structure with its types.						
4.	Summarize the concept of arrays in C++.						
5.	Define the term tree traversal and mention the type of traversals?						
6.	6. Define how the graphs can be represented in the datastructures.						
7.	What is the purpose of using virtual functions?						
8.	8. Write an algorithm to find whether the number is even or odd using if else statement.						
9.							
10.	How you define a minimum spanning tree?						
	PART – B (5 x 16= 80Marks)						
11.	(a) Describe in detail about the types of expressions with an example	CO1-U	(16)				
	Or						
	(b) Explain the control structures used in C++ with an example	CO1-U	(16)				
12.	(a) Explain in detail about the array implementation of stacks with a proper example	CO1-U (16)					
	Or						
	(b) Explain in detail about the array implementation of queues with an example	CO1-U	(16)				

- 13. (a) Differentiate the methodologies used in BFS and DFS with an example CO1-U (16)
 - (b) Differentiate the functionalities of Binary trees and AVL trees with an CO1-U example (16)
- 14. (a) Construct a binary search tree for the given list of number CO2-App (16) 8,18,25,11,14,4,18,31,45,22,35,49

Or

(b) Apply Kruskals algorithm for the given weighted graph and find the cost CO2-App of the graph (16)

- 15. (a) Write a C++ program to implement Stack ADT. CO2- App (16)
 Or
 - (b) Write a C++ program to implement Queue ADT. CO2- App (16)