A		Reg. No. :											
		Question P	aper	Co	de:	U3	024						
	B.E./B	Tech. DEGREE	EXAN	MIN	ATI(ON,	NOV	/ 202	3				
		Thir	d Sem	ester									
		Electrical and E	lectror	nics l	Engi	ineer	ing						
2	1UMA324- PROBABIL	ITY, STATISTIC M	CS, CO ETHO	MPI DS	LEX	(AN	ALY	SIS A	ANI) NU	JME	RIC	AL
		(Regu	lations	s 202	1)								
		(t,f,x2 tabl	e has to	o be	give	en)							
Dura	ation: Three hours							Ma	ixim	um:	100	Mar	ks
		Answer	AllQ	uesti	ons								
		PART A - ((10x 1	= 10	Ma	rks)							
1.	Large sample size is											С	06- U
	(a) 30	(b) >30		(0	c) <	30		(d) n	one	of tł	ne ab	ove	
2.	The degrees of freedom	for the sample si	ze n=2	25 in	t te	st is						CO	5 - U
	(a) 20	(b) 22		(0	c)	24					(d)	26	
3.	If X and Y are independ	ent random varia	bles th	en								C)6- U
	(a) $f(x,y) = f(x) \cdot f(y)$	(b)f(x,y) = f(f(y))	(x) +	(c) :	f(x,y	y) = 1	f(x) -	f(y)	(d ab) l oove	None	0	f the
4.	discrete distribution	n has equal mean	and va	irian	ce							С	06 -U
	(a) Binomial	(b) Poisson		(0	c) G	eom	etric	((d) 1	Expo	onent	ial	
5.	When Gauss Jordan me matrix.	ethod is used to	solve	AX=	=B,	A is	tran	sferre	ed ir	ı a		C	06 -U
	a) diagonal	b) identity		C	c) no	one					(d) z	zero	
6.	For any root the order of	f convergence of	Newto	on's i	neth	nod i	s		-			С	06- U
	(a) 4	(b) 1		(0	c) 3	(0	l) No	ne of	the	abov	ve		
7.	Taylor Series method w Milne's and Adam's me	ill be very useful thods	l to giv	ve so	me _		_ val	ues f	for R	ĽK,		C)6- U
	(a) initial	(b)final		c)On	e					(d) t	wo	

8.	prior values are r	equired to predict the ne	ext value in Milne's method	CO6- U
	(a) 1	(b)2	(c) 3	(d) 4
9.	The value of $\int_{c} \frac{dz}{z+2}$, c	z = 1 is		CO4- App
	(a) 2 <i>π</i> i	(b) -2πi	(c) 4i	(d) 0
10.	Find the poles of $f(z) =$	$\frac{z^2+1}{1-z^2}$		CO4- App
	(a)1,0	(b)1,-1	(c) 1,0	(d)0,0
		PART – B (5 x 2	= 10Marks)	
11.	A sample of size 10 l mean 50, Compute the c	has mean 58, standard calculated value of t' di	deviation18.4 and population stribution.	n CO1- App
12.	A Continuous random $f(x) = 6x(1-x), 0 \le x \le 1$	m variable with den Check the above is PD	nsity function is given by F or not.	y CO2- App
13.	State the principle used	in Gauss Elimination M	lethod	CO6- U
14.	Which method is better	? Taylor's series or RK	method. Why?	CO6- U

15. Find the Residues of
$$f(z) = \frac{z+1}{z(z-2)}$$

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) (i) Two researchers A and B adopted different techniques while CO1- Ana (8) rating the student's level. Identify the Sampling distribution; Can you say that the techniques adopted by them are significant?

Researchers	searchers Below A		Above	Genius	Total
	Average		Average		
А	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300

Table value is 7.815

(ii) Two horses A and B were tested according to time (in seconds) CO1- Ana (8) to run on a particular track with the following results:

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Identify the sampling distribution, test whether Horse A is running faster than B at 5% level. Table value is 2.201

Or

CO5 - App

(b) (i) A company keeps records of accidents. During a recent safety CO1- Ana review, a random sample of 60 accidents was selected and classifields by the day of the week on which they occurred. Table value is 9.458

Days	Mon	Tue	Wed	Thu	Fri
No.of. accidents	8	12	9	14	17

(ii) Two independent samples of sizes 9 and 7 from a normal CO1- Ana (8) population had the following values of the variables.

Sample I	18	13	12	15	12	14	16	14	15
Sample	16	19	13	16	18	13	15		
II									

Identify the sampling distribution, Do the estimates of the population variance differ significantly. Table value is 3.58.

17. (a) A Random Variable X has the following probability distribution CO2- App (16)

X=x	0	1	2	3	4	5	6	7		
P(X=x)	0	k	2k	2k	3k	k ²	$2k^2$	$7k^2 + k$		
Findi) 'k'										

ii) P(X < 6), $P(X \ge 6)$ & P(1.5 < X < 4.5 / X > 2)

iii) If $P(X < k) > \frac{1}{r}$ find the minimum value of 'k' Or

(b) (i) Using the probability mass function of Poisson distribution , CO2- App (8)
 Compute the moment generating function and hence find mean and variance.

(ii) The joint pdf of (X,Y) is given by $f(x, y) = e^{-(x+y)}, 0 < x, y < \infty$. CO2- App (8) Are X & Y are independent?

18. (a) (i) Solve for a positive root of $3x - \cos x - 1 = 0$ by Newton's CO3- App (8) Raphson method.

> (ii) Solve 4x + 2y + z = 14, x + 5y - z = 10, x + y + 8z = 20 by Gauss CO3- App (8) Elimination method

> > Or

(8)

(b) (i) Using Power method find numerically largest Eigen value of CO3- App (8)

$$\begin{pmatrix} 25 & -1 & -2 \\ 1 & 3 & -0 \\ 2 & 0 & -4 \end{pmatrix}$$
(ii) Solve $28x+4y-z = 32$; $x+3y+10z = 24$; $2x+17y+4z = 35$ by CO3- App (8)
Gauss - Seidel method
19. (a) (i) Using Taylor's series method find $y(1.1)$ given $y' = x + y$ CO4- App (8)
with $y(1) = 0$
(ii) Given $\frac{dy}{dx} = \frac{y - x}{y + x}$ with $y(0) = 1$, find y for $x = 0.1$ by Euler's CO4- App (8)
Method
0r
(b) Using R.K Method of 4^{th} order, solve $\frac{dy}{dx} = x + y^2$ with $y(0) = 1$ at CO4- App (16)
 $x = 0.1$, $x = 0.2$
20. (a) (i) Evaluate
 $f(z) = \int_{C} \frac{\cos \pi z^2 + \sin \pi z^2}{(z+1)(z+2)} dz$ by using Cauchy's Integral formula
where C is $|z| = 3$
(ii) Expand $\frac{z-1}{(z+2)(z+3)}$ as Laurent's series valid in the region
 $2 < |z| < 3$
Or
(b) Using Contour integration, to prove
 $\int_{-\frac{z}{x}(x^2 + x^2)(x^2 + b^2)} dx = \frac{\pi}{x + b} > 0$