A		Reg. No. :										
Question Paper Code: 93305												
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023												
Third Semester												
Electrical and Electronics Engineering												
19UEE305 - ELECTRO MAGNETIC FIELDS												
(Regulation 2019)												
Dur	ation: Three hours							Ma	axim	um:	100 N	Marks
Answer ALL Questions												
PART A - (10 x 1 = 10 Marks)												
1.	The Laplacian operator	is actually									С	01 - R
	(a) Grad(Div V)	(b) Div(Grad V)	(c)	Curl	(Div	' V)		(d	l) Di	v(Cu	rl V)	
2.	Spherical coordinate coordinate system then	•	-	nsfor			Ca	artesi	ian		C	01 - R
	(a) $r \sin \theta \cos \phi$	(c)	(c) $r \sin 2\theta$ (d) $r \cos 2\theta$					os 2	φ			
3.	Coulomb is the unit of w							CO2-R				
	(a) Field strength	(b) Charge	(c)	Pern	nittiv	vity		(d) Fo	rce		
4.	As charge increases, what happens to flux density?								С	CO2-U		
	(a) Increases	(b) Decreases	(c)	Rem	ains	cons	tant	(d	l) Be	com	es zei	0
5.	Which of the following cannot be computed using the Biot Savart law?							C	0 3- U			
	(a) Magnetic field intensity				(b) Magnetic flux density							
	(c) Electric field intensity			(d) Permeability								
6.	If a coil carrying current is placed in a uniform magnetic field, then						C	0 3- U				
	(a) emf is produced				(b) Torque is produced							
	(c) Force is produced	(d	(d) Torque and force is produced									
7.	What is the another name for Transformer emf							C	05 - U			
	(a) Motional emf			(b) Sta	tical	ly Ir	nduce	ed er	nf		
	(c) A combination of motional and transformer emf (d) None of the above											

8.	Wha lossl	ce, C	05- U					
	(a) Attenuation constant (b) Constitutive parameter(c							
	(c) 1	Loss tangent						
9.	Elec	C	CO5- U					
	(a) I	Longitudinal waves		(b) Transverse waves				
	(c)	Sinusoidal waves		(d) Surface waves				
10.	Unit	t of Poynting Vecto	f Poynting Vector					
	(a) V	Watt	(b) Watt/s	(c) Watt/ m^2	(d) Watt/m			
			PART – B (5 x	2= 10 Marks)				
11.	Exp	plain the terms sole	CO1-U					
12.	Define Electric Field Intensity					CO2-U		
13.	Stat	e ampere circuital	CO3-U					
14.	Cor	ntrasts Transformer	CO5-U					
15.	State Poynting theorem and Skin Depth					CO6-U		
			PART – C (S	5 x 16= 80Marks)				
16.	(a)	What are the typ Cartesian Co-ordi Elements for the s	CO1-App	(16)				
	(b)	Verify stokes the the semicircle wit	CO1-Ana	(16)				
17.	(a)		s law to determine the uniform charged wire Or	e electric field intensity due	CO2- App	(16)		
	(b)	At an interface set tangential composi- the boundary, w intensity is discon-	CO2- App	(16)				

18. (a) At an interface separating two different magnetic materials show CO3- App (16) that the tangential component of magnetic field intensity is continuous across the boundary, whereas the normal component of magnetic field intensity is discontinuous at the boundary

Or

- (b) Verify ampere's circuital law for infinite long straight conductor CO4- App (16) placed along z axis. Assume amperian loop for the straight conductor
- 19. (a) With necessary explanation, derive the Maxwell's equation in CO5- App (16) differential and integral forms for dynamic fields

Or

- (b) State and explain Faraday's law of electromagnetic induction and CO5- App (16) derive the expressions for statically and dynamically induced emf.
- 20. (a) Derive the electromagnetic wave equation and propagation constant CO6-U (16) and intrinsic impedance

Or

(b) Derive an expression for pointing theorem in integral and pointing CO6- U (16) form