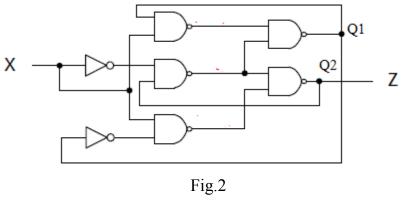

A		Reg. No. :								
		Question Pa	per Code: 53306							
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023										
Third Semester										
Electrical and Electronics Engineering										
15UEE306 -DIGITAL LOGIC CIRCUITS										
	(Regulation 2015)									
Dura	ation: Three hours	A		n: 100 Marks						
Answer ALL Questions										
		PART A - (1	$0 \ge 1 = 10 \text{ Marks}$							
1.	Convert binary 11111	1110010 to hexade	ecimal.	CO1- R						
	(a) EE2 ₁₆	(b) FF2 ₁₆	(c) 2FE ₁₆	(d) FD2 ₁₆						
2.	Any signed negative l	CO1- R								
	(a) MSB	(b) LSB	(c) Byte	(d) Nibble						
3.	Canonical form is a u	nique way of repres	senting	CO2- R						
	(a) SOP	(b) Minterm	(c) Boolean Expressions	(d) POS						
4.	The format used to present the logic output for the various combinations of logic inputs to a gate is called									
	(a) Truth table.		(b) Input logic function.							
	(c) Boolean constant		(d) Boolean variable							
5.	What is a shift register that will accept a parallel input, or a CO3- R bidirectional serial load and internal shift features, called?									
	(a) Tri state	(b) End around	(c) Universal	(d) Conversion						
6.	A basic S-R flip-flop basic logic gates?	can be constructed	by cross-coupling of which	CO3- R						
	(a) AND or OR	(b) XOR or XNC	0R (c) NOR or NAND	(d) AND or NOR						

7.	Table that is not a part of asynchronous analysis procedure is					CO4- R				
	(a)]	Fransition table	(b) State table	(c) Flow table	(d) Excitatio	n table				
8.	How much locations an 8-bit address code can select in memory?					CO4- R				
	(a) 8	8 locations (b) 256 locations (c) 65,536 locations (d) 131,		(d) 131,072	locations					
9.	Eacl	h unit to be model		CO5- R						
	(a) Behavioral model			(b) Design architecture						
	(c) Design entity			(d) Structural model						
10.	Which of the following describes the connections between the entity port and the local component?(a) Port map(b) One to many map									
	(c) One to one map (d) Many to									
	PART - B (5 x 2= 10 Marks)									
11.	Why Excess-3 code is called self complementing code? CO1- U									
12.	. Draw the circuit diagram of full adder using two half adders.									
13.	. Compare Moore and Melay circuits.					CO3- R				
14.	. Define static hazard.					CO4- R				
15.	What are the various modeling techniques in VHDL?					CO5- R				
			PART – C (5	x 16= 80 Marks)						
16.	(a)	(i) Encode the b Hamming Code.	pinary word 1011 into	o seven bit even parity	CO1- U	(10)				
	(ii) Write short notes on binary weighted code.			CO1- U	(6)					
			Or							
	(b)	(i) With a neat TTL NAND gate	-	e working of two input	CO1- U	(10)				
		(ii) Compare tote	em pole and open colle	ector outputs.	CO1- U	(6)				
17.	(a)	Design a 3:8 dea and maxterm ger	-	operation as a minterm	CO2- Ana	(16)				
	(b)	Design a circuit equivalent gray c	that can convert a four	r bit binary code into its	CO2- Ana	(16)				

18. (a) Design a MOD-7 synchronous counter using JK flip flop and CO3- Ana (16) implement it. Also draw its timing diagram.


Or

(b) Design a clocked sequential circuit for the state diagram CO3- Ana (16) shown in Fig.1 using T flip flop.

19. (a) (i) Analyze the following asynchronous network shown in CO4-Ana (16) Fig.2 using a flow table. Starting in the total stable state for which X = Z = 0.

(ii) Are there any races in the flow table?

Or

(b) Show how to programme the fusible links to get a 4 bit gray CO4-Ana (16) code from the binary inputs using PLA and PAL and compare the design requirements with PROM.

20. (a) Write a VHDL program for full adder using structural CO5-U (16) modeling and 1: 4 DMUX using data flow modeling.

Or

(b) (i)	Explain the various operators supported by VHDL.	CO5-U	(8)
	Write a VHDL code to realize a decade counter with avioral modeling.	CO5-U	(8)