•
Δ
\Box

Reg. No.:					

Question Paper Code: 53303

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023

Third Semester

Electrical and Electronics Engineering

		Electrical and Elect	ionics Engineering			
		15UEE303 - FI	ELD THEORY			
		(Regulati	ion 2015)			
Dura	Maximum: 100 Marks					
		Answer AL	`			
		PART A - (10 x	x 1 = 10 Marks			
1.	The maximum space i	rate of charge of that f	function is	CO1- R		
	(a) Gradient	(b) Divergence	(c) Curl	(d) Del operator		
2.	2. Under what condition the vectors are said to be in parallel					
	(a) A.B=0	(b) AxB=0	(c) Δ.A=0	(d) $\Delta x A = 0$		
3.	Relation between electric field intensity and electric flux density			CO2- R		
	(a) ε/σ	(b) εσ	(c) E ε	(d) σ/ϵ		
4.	All the charges on a co	onducting body remai	ns on of the	body CO2- R		
	(a) Inside	(b) Outside	(c) Surface	(d) All the above		
5.	Polarization is defined	d as		CO3- R		
	(a) Dipole moment / v	volume	(b) Dipole moment	/ Area		
	(c) Volume/ dipole me	oment	(d) Dipole moment / length			
6.	Relation between B&	H is		CO3- R		
	(a) B=μH	(b) H=μB	(c) B=µ/H	(d) None of the above		
7.	The concept of dis	splacement current v	was a major contrib	oution CO4- R		
	(a) Faraday	(b) Lenz	(c) Maxwell	(d) Lorentz		

8.	Circ	cuit theory is		(CO4- R
	(a) T	Three dimensional analysis	(b) Reference frequency		
	(c) S	Simple to understand	(d) Voltage is not directly	involved	
9.	For	a uniform plane wave E and H is at		(CO5- R
	(a) I	Parallel to each other	(b) Perpendicular to each of	other	
	(c) I	Different frequency	(d) Different phase		
10.	The	characteristic impedance of free space is	s given by Ohms	(CO5- R
	(a) 3	377 (b) 375	(c) 376	(d) 378	
		PART - B (5 x)	2= 10 Marks)		
11.	Giv	e the physical significance of Divergence	2.		CO1 R
12.	Rec	all the formula for finding force between	two charges in vector form		CO2 R
13.	Stat	e Gauss law for magnetic field.			CO3 R
14.	4. Compare Transformer and Motional EMF				
15.	Wri		CO5 R		
		PART - C (5	x 16= 80Marks)		
16.	(a)	Explain in detail the basics of different derive its relevant equations	co-ordinate system and	CO1- App	(16)
		Or			
	(b)	Verify the divergence theorem for $A=xy^2$ ax+y³ ay+y²z az and the surfactor $0 < x < 1, 0 < y < 1, 0 < z < 1$.	_	CO1- App	(16)
17.	(a)	State and explain the boundary condition Or	ons for electric field	CO2- App	(16)
	(b)	(i) Derive poisson's and Laplace equat	ion?	CO2- App	(8)
		(ii) Find the electric field field intensity infinite straight wire .	at a distance x above an	CO2- App	(8)

18.	(a)	(i) State and Explain Biot savarts law.	CO3- App	(6)			
		(ii) Obtain the flux density and field intensity for circular coil.	CO3- App	(10)			
Or							
	(b)	(i)Establish the relation of force between current carrying parallel	CO3 - App	(8)			
		conductors					
		(ii) Determine the force between two long parallel wires of 200m length separated by 5cm in air and carrying currents of 40A same direction and in opposite direction	CO3 - App	(8)			
19.	(a)	State and derive the Maxwell's equation in Integral form and point form for conducting medium	CO4- U	(16)			
	Or						
	(b)	(i) Develop the equation for conduction current density.	CO4- U	(8)			
		(ii) Compare Field Theory and Circuit Theory	CO4- U	(8)			
20.	(a)	Deduce the Wave equation for time varying fields in free space Or	CO5- App	(16)			
	(b)	State poynting theorem. Derive the expression for it	CO5- App	(16)			