A		Reg. No. :												
		Question P	ape	r C	ode	: U4	4303	3						
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023														
Fourth Semester														
Electrical and Electronics Engineering														
21UEE403-PRINCIPLES OF DIGITAL ELECTRONICS														
(Regulations 2021)														
Dura	ation: Three hours		-				Μ	axin	num:	100	Mar	ks		
		Answe	er AL	LL Q	uesti	ons								
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$														
1.	How many entries will be in the truth table of a 4-input NAND gate? CO1- U							1- U						
	(a) 4	(b) 8		(0	c) 16	-		-		((d) 3	2		
2.	Identify the Largest Binary Number that can be expressed with 12 bits? CO1-						1- U							
	(a) (1111 1111 1111) ₂	(b) $(4095)_1$	0	(0	c) (Fl	FF) ₁₆	5		(0	l) Al	loft	the a	bove	
3.	Which pair of Boolean expressions satisfies the idempotency property? CO1- U						1- U							
	(a) $A + \overline{A} = 1, A, \overline{A} = 0$			(1	(b) A+A=A, A . A=A									
	(c) $A + 1 = 1$, $A \cdot 1 = A$			(0	(d) $A + 0 = A, A \cdot 0 = 0$									
4.	Find the number of OR gates required to design 8 to 3 encoder circuit CO1							1- U						
	(a) 3	(b) 5		(0	c) 8 (c						(d) 1	6		
5.	Find the output of SR flip flop when S=1, R=0 is?						CO	1- U						
	(a) 1	(b) 0		(0	c)No	char	nge		((d) H	igh i	mpe	danc	e
6.	Which flip-flop will a	ct as Master Sla	ve?										CO	1- U
	(a) SR	(b) JK		(0	c) D						(d) 7	-		
7.	Internal propagation d	lelay of asynchro	onou	s cou	inter	is re	mov	ed b	у				CO	1- U
	(a) Ripple counter				(b) Ring counter									
	(c) Modulus counter			(0	(d) Synchronous counter									

8.	What happens to the parallel output word in an asynchronous binary down counter, whenever a clock pulse occurs?						
	(a) The	e output word decreases by 1.	(b) The output word decre	eases by 2.			
	(c) The	e output word increases by 1.	ases by 2.				
9.	Find t	he default value of the reg data type?	(CO1- U			
	(a) 0	(b) 1	(c) Z	(d) X			
10.		_ operator usually comes before the c	CO1- U				
	(a) Una	ary (b) Binary	(c) Ternary	(d) None			
		PART – B (5 :	x 2= 10Marks)				
11.	Explai	CO1- U					
12.	Explai	ne SOP and POS.	CO1- U				
13.	Conve	rt JK flip-flop to T flip-flop.	CO1- U				
14.	Explai	n the various types of Hazards in seq	CO1- U				
15.	Differe	entiate blocking and non-blocking as	CO1- U				
		PART – C (5 x 16= 80Marks)				
16.	(a) C	onvert the following $(147.3)_8$ to () ₁₆ $(010010101000)_2$ to () ₁₆ $(38.21)_{10}$ to () ₂ $(231.3)_{10}$ to () ₈ Or		CO1- U	(16)		
	(b) E ez	xplain the types of weighted and non xample for each .	-weighted codes with an	CO1- U	(16)		
17.	(a) (i) F	Simplify the following function usin (A,B,C,D)= $\sum m(0,1,2,3,4,6,8,9,10,1)$	CO2- App	(10)			
	(ii)) Design a half subtractor and implen gates.	nent the same using logic	CO2- App	(6)		
		Or		CO2 4	(12)		
	(b) (1 (i	i) Design a Binary to Gray code conv i) Design a half adder and implemen	etter. t the same using logic gates.	CO2- App CO2- App	(12) (4)		
18.	(a) D	esign a synchronous Modulo-10 Up Or	Counter using JK flipflops.	CO2- App	(16)		
	(b) D se	esign synchronous sequential circuit equence 1,3,4,5 repeatedly. Use T flip	that goes through the count p-flops for your design.	CO2- App	(16)		

19. (a) Design an asynchronous sequential circuit with two inputs X1 CO3- App (16) and X2 with one output Z. Initially both inputs are equal to '0'. When X1 or X2 becomes '1', the output becomes '1'. When the second input becomes '1', the output changes to '0'. The output stays at '0' until the circuit goes back to the initial state.

Or

- (b) Implement a 3 X4X2 PLA PLD circuit to implement the logic CO3- App (16) functions $F_1(x,y,z) = \sum m(0,1,3,5) F_2(x,y,z) = \sum m(3,5,7)$
- 20. (a) Develop Verilog code for full subtractor using gate level and CO3- App (16) data flow modeling.

Or

(b) Develop Verilog code to design 4 bit counter. CO3- App (16)

U4303