	Reg. No. :											
Question Paper Code: U4302												
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023												
Fourth Semester												
Electrical and Electronics Engineering												
	21UEE402 – C	CONT	ROLS	SYS	ГЕМ	S						
	(Regu	ulation	s 202	1)								
Duration: Three hours Maximum: 100 M						Mai	rks					
	Answer	ALL	Quest	ions								
	PART A - ((10 x 2	= 20	Mar	ks)							
1.	What are the properties of signal flow graphs?										CO	l-U
2.	Explain the drawbacks of static error co-efficient.										CO	l-U
3.	How the transient responses of a system with feedback differ from that without feedback?										CO	l- U
4.	Classify the control system is depending on the value of damping ratio.											l-U
5.	Explain the initial slope of the Bode magnitude plot for a system having no poles at the origin?										CO	l- U
6	Define gain cross over frequency										CO	l-U
7	Draw the circuit of lead compensator and draw its pole – zero plot.										CO	l-U
8	Show the transfer function of Nyquist stability criterion?										CO	l-U
9	Define Controllability.										CO	l -U
10	Explain the properties of state transition matrix?										CO	l-U
	PART –	- B (5 x	16=	80M	arks)						
11	(a) Develop the closed loop transfer f	unction	D(s)	R(s)) of t	he svs	stem	(101	-Anr		(16)

11. (a) Develop the closed loop transfer function C(s)/R(s) of the system CO1 -App (16) whose block diagram is shown in figure.

Or

(b) Identify the overall gain C(s)/R(s) for the signal flow graph CO1- App (16) shown in fig

12. (a) Analyze the response of the system for unit step input to position CO2 -App (16) control system with velocity feedback

- (b) Derive the unit step response of the critically damped for second CO2 -Ana (16) order system
- 13. (a) Construct the Bode plot for the following transfer function and CO3- Ana (16) obtain the gain and phase cross over frequency whose

$$G(s) = \frac{20}{s(1+3s)(1+4s)}$$

Or

(b) Construct the Polar plot for the following transfer function and CO3 - Ana (16) obtain the gain margin and phase margin whose

$$G(s) = \frac{1}{s(1+s)(1+2s)}$$

- 14. (a) Construct Routh array and determine the stability of the system CO4 -U (16) represented by the characteristics equation and comment on the location of roots.
 - (i) $S^5 + S^4 + 2S^3 + 2S^2 + 3S + 5 = 0$ (ii) $S^7 + 5S^6 + 9S^5 + 9S^4 + 4S^3 + 20S^2 + 36S + 36 = 0$

Or

(b) A unity feedback control system has an open loop transfer CO4- Ana (16) function $G(s)=K/(s(s^2+4s+13))$. Sketch the root locus.

15. (a) Explain the procedure for design of lead compensator. CO3 - App (16)

- Or
- (b) Consider the system with the state equation. Interpret the CO3- App (16) controllability of the system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

U4302