A

Reg. No.:					

Question Paper Code: 94303

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023

Fourth Semester

Electrical and Electronics Engineering

19UEE403 – Principles of Digital Electronics

(Regulations 2019)

Duration: Three hours					Maximum: 100 Marks			
		An	swer A	LL Questions				
		PART	A - (10	x 1 = 10 Marks)				
1.	BCD code ranges	from				CO1- U		
	(a) 0 to 1	(b) 0 to 9		(c) 0 to 15	(d) 0	to 7		
2.	. Identify the even parity code from the following					CO1- U		
	(a) 11001	(b) 1110	(c) 0	111	(d)01	10		
3.	What will be the n	number of selecti	on lines	s in a 16 to 1 Multip	lexer?	CO1-U		
	(a) Type- 0	(b) Type	e - 1	(c) Type -2	(d) Ty	pe - 3		
4.	Find the number o	;	CO1- U					
	(a) EX-OR gate ar	nd NOR gate		(b) EX-OR gate	gate and NOR gate			
	(c) EX-OR gate and AND gate			(d) Four NANI	(d) Four NAND gates			
5.	What is the output	t of SR flip flop	when S	=1, R=0 is?		CO1-U		
	(a) 1	(b) 0		(c) No change	(d) Hi	gh impedance		
6.	What is output of	D Flipflop when	D=1?			CO1- U		
	(a) 1	(b)0		(c) No Change	e (d) X			
7.	How many natural states will there be in a 4-bit ripple counter?							
	(a) 4	(b) 8		(c) 16	(d) 32			

8.	How repre		CO1- U					
	(a) (One bit	(b) two bits	(c) four bits	(d) eight bits			
9.	The Verilog HDL code starts with the keyword							
	(a) a	ılways	(b) module	(c) end module	(d) items			
10.	Whi	ch of the foll	owing loops are suppor	ted by verilog?		CO1- U		
	(a) i	f-else loop	(d) All the a	All the above				
			PART – B (5 x 2= 10 Marks)				
11.	Con	vert the follo	wing decimal numbers	to the indicated bases		CO1- U		
		7526.75 to (?) ₈ b) 1856.959 to (?) ₁	16				
12.	Define SOP and POS.							
13.	Define a sequential logic circuit. Give an example.							
14.	Define Races .							
15.	Explain the purpose of developing HDL code for digital design.							
			PART – C	C (5 x 16= 80Marks)				
16.	(a)	(010 (38.2	following (3) ₈ to () ₁₆ (010101000) ₂ to () ₁₆ (21) ₁₀ to () ₂ (1.3) ₁₀ to () ₈ Or		CO1- U	(16)		
	(b)	Explain the example for	types of weighted and r	non-weighted codes with an	CO1- U	(16)		
17.	(a)	(i) Design a	Binary to Gray code co	onverter.	CO2- Ap	p (8)		
		(ii) Design	a half adder and implem Or	ent using logic gates.	CO2- Ap	p (8)		
	(b)	. ,	ent the given function us 2, 6,7,8,9,10,11,12,15)	sing 8 X 1 MUX F (<i>A</i> , <i>B</i> , <i>C</i> ,	D) CO2- Ap	p (8)		
		(ii) Design	3 to 8 decoder using log	ic gates.	CO2- Ap	p (8)		
18.	(a)	Design a se flip-flops.		et the sequence 101 using JK	CO2- Ap	p (16)		
	(b)		-	cuit that goes through the couflip-flops for your design.	unt CO2- Ap	p (16)		

- 19. (a) An asynchronous sequential circuit has two internal states and one CO3- Ana (16) output. The excitation and output function describing the circuit are as follows. $Y_1 = x1.x2 + x1.y2 + x2.y1$, $Y_2 = x2+x1.y1.y2+x1.y1$ Z = x1+x2
 - (i) Draw the logic diagram of the circuit.
 - (ii) Derive the transition table and output map.

Describe the behavior of the circuit.

Or

(b) An asynchronous sequential circuit is described by the following CO3- Ana (16) excitation and output equation.

$$Y = x1.x2 + (x1+x2).y$$
 $Z= Y$

- (i) Draw the logic diagram of the circuit.
- (ii) Derive the transition table and output map.

Describe the behavior of the circuit.

- 20. (a) Implement the following function using PLA, A(x,y,z)= CO2- App (16) $\sum m(1,2,4,6) B(x,y,z) = \sum m(0,1,6,7) C(x,y,z) = \sum m(2,6).$
 - (b) Develop Verilog code to design 8 to 1 multiplexer using dataflow CO2- App (16) and behavioural modeling.