Reg. No. :						

Question Paper Code: U5304

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023

Fifth Semester

Electrical and Electronics Engineering

21UEE504 - INTERNET OF THINGS FOR ELECTRICALL AUTOMATION

(Regulations 2021)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions PART A - $(10 \times 2 = 20 \text{ Marks})$

- 1. State any two key characteristics of the Internet of Things.CO1- U
- 2. Name two common communication models used in IoT applications. CO1- U
- 3. In what practical application would you choose a capacitive sensor over a CO2-App resistive sensor? Explain.
- 4. Describe a situation where you would select an ultrasonic sensor for distance CO2-App measurement.
- 5. In what practical application would you choose a stepper motor over a DC CO2-App motor, and why?
- 6 Describe a scenario where solid-state switches are advantageous over CO2 App mechanical switches in terms of reliability.
- 7 Describe the primary function of an Integrated Development Environment CO2-App (IDE) when programming Arduino boards.
- 8 Compare and contrast the key differences between Raspberry Pi and Arduino CO3-Ana boards, focusing on their hardware capabilities and use cases.
- 9 Compare and contrast the differences between industrial automation and CO4-Ana smart traffic control applications in a smart city in terms of their objectives and technologies involved.
- 10 Evaluate the potential challenges and benefits of implementing a smart grid CO5-Ana system in a densely populated urban area within a smart city context.

		PART – B (5 x 16= 80Marks)					
11.	(a)	Illustrate the logical design of IoT in detail.	CO1- U	(16)			
		Or					
	(b)	Summarize the physical design of IoT in detail.	CO1 -U	(16)			
12.	(a)	Explain the working principle of a resistive sensor and provide an example of its use in a practical application. Or	CO1- U	(16)			
	(b)	Describe how capacitive sensors work, including their basic construction and their sensitivity to changes in capacitance.	CO1- U	(16)			
13.	(a)	Draw and explain various types of Electrical Actuation Systems. Or	CO1-U	(16)			
	(b)	Sketch the Solid-state switches sensor and explain its operation.	CO1- U	(16)			
14.	(a)	for IoT projects.	CO3- Ana	(16)			
		Or					
	(b)	Discover the process of customizing a SoC for specific application requirements.	CO3- Ana	(16)			
15.	(a)	Illustrate the significance of data analytics and AI in optimizing various aspects of a smart city.	CO5- U	(16)			
Or							
	(b)	Describe initiatives to reduce environmental impact and promote	CO5- U	(16)			

sustainability through IoT-enabled industrial automation.