A		Dog No 4						
A		Reg. No. :						
		Question Pape	er Code: U3023					
	B.E./	B.Tech. DEGREE EXAM	MINATION, NOV 2023					
		Third Seme	ester					
	I	Electronics and Communi	cation Engineering					
	21UMA323-	NUMERICAL ANALYS	SIS AND LINEAR ALC	BEBRA				
		(Regulations	2021)					
Dur	ation: Three hours	Answer All Qu		aximum: 100 Marks				
		PART A - (10x 1 =	= 10 Marks)					
1.	Trapezoidal rule is so called, because it approximates the integral by the sum oftrapezoids							
	(a) n	(b) n+1	(c) n-1	(d) 2n				
2.	In Simpson's 3/8 rule the number of subintervals should be CO							
	(a) multiple of 1	(b) multiple of 2	(c) multiple of 3	(d) All of these				
3.	In Euler's method, if h	n is large then it gives	value	CO2 -U				
	(a) accurate	(b) inaccurate	(c) average (d) No	one of these				
4.	The Runge-Kutta method of second order is nothing but the CO2 -U							
	(a) Euler's method		(b) modified Euler's method					
	(c) improved Euler's	method	(d) Taylor's series method					
5.	PDE of second order, if B^2 -4AC<0 then CO6-U							
	(a) parabolic	(b)elliptic	(a) hyperbolic	(b)cyclic				
6.	Bender-Schmidt recur	rence equation is valid if	$\lambda =$	CO3- U				

(a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (C) 3/2 (d) 2/3

7. In a vector space V, for every x, y ∈ V then the property x + y = y + x is CO4-U known as ______
(a) commutative (b) associative (c) identity (d) inverse

8. If T: V \rightarrow W be linear transformation then T(0) = _____ CO4- U

(a) 0 (b) 1 (c) 2 (d) 3

9. In a vector sapace V, for $x, y, z \in V$ if $\langle x, y \rangle = \langle y, z \rangle$ then _____

(a) y = z (b) $y \neq z$ (c) y = -z (d) none of these

10. For any two vectors x and y in an inner product space V, , $||x + y|| \le CO5-U$

(a) ||x|| + ||y|| (b) ||x|| ||y|| (c) ||x|| - ||y|| (d) ||x|| / ||y||

PART - B (5 x 2= 10Marks)

11. Using two –point Gaussian quadrature formula evaluate $\int_{1}^{1} (3x^2 + 5x^4) dx$ CO1- App

12. Using Euler's method find y(0.2) given $\frac{dy}{dx} = y + e^x$, y(0) =0 CO2- App

13. Classify $\frac{\partial^2 \mathbf{u}}{\partial x^2} + \frac{\partial^2 \mathbf{u}}{\partial y^2} = 0$ CO3- App

14. If W_1, W_2 are two subspaces of a finite dimensional vector space V with CO4-App dim $W_1 = 2$, dim $W_2 = 3$, dim $(W_1 + W_2) = 4$ then find dim $(W_1 \cap W_2)$

15. Find the norm of (1,2,3) in $V_3(R)$ with standard inner product. CO5 -App

PART – C (5 x 16= 80Marks)

16. (a) (i) Compute $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ at x=1.5 from the following data CO1- App (8)

Ī	X	1.5	2.0	2.5	3.0	3.5	4.0
Ī	у	3.375	7.000	13.625	24.000	38.875	59.000

(ii) Evaluate $\int_{0}^{\pi} \sin x dx$ by dividing the range into 10 equal parts CO1-App (8)

using (i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule.

Or

(b) (i) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^{2}}$$
 using Romberg's method correct to 4 decimal CO1- App (8) places.

(ii) Evaluate
$$\int_{0}^{1} \frac{1}{1+x^{2}} dx$$
 using two point Gaussian CO1- App (8) quadrature formula.

17. (a) (i) Using Taylor's series method find
$$y(1.1)$$
 given $y' = x + y$ CO2- App (8) with $y(1)=0$

(ii) Using Euler's method find
$$y(0.1)$$
 and $y(0.2)$ from $y' = 1 - y$, CO2- App (8) $y(0)=0$

Or

(b) (i) Using R-K method of fourth order, find y(0.1) for the initial CO2-App (8) value problem
$$\frac{dy}{dx} = x + y^2$$
, y(0) = 1

(ii) Given
$$\frac{dy}{dx} = x^3 + y$$
, $y(0) = 2$, $y(0.2) = 2.443$, $y(0.4) = 2.99$ CO2- App (8)

y(0.6) = 3.68. Calculate y(0.8) by Milne's Predictor & Corrector method.

18. (a) (i) Solve
$$\frac{\partial^2 \mathbf{u}}{\partial x^2} = 32 \frac{\partial \mathbf{u}}{\partial t}$$
, $\mathbf{u}(0,t) = 0$, $\mathbf{u}(1,t) = t$, $\mathbf{u}(x,0) = 0$. Take $h = 0.25$ and find the values of \mathbf{u} up to $t = 5$ using Bender-Schmidt's difference equation. (8)

(ii) Using Crank-Nicholson's difference equation to solve CO3- App (8)
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \frac{\partial \mathbf{u}}{\partial \mathbf{t}} \quad \mathbf{u}(0,\mathbf{t}) = 0 \quad \mathbf{u}(1,\mathbf{t}) = \mathbf{t} \quad \mathbf{u}(\mathbf{x},0) = 0. \text{ compute u for one time step function with h=0.25} \quad .$$

 $\bigcap r$

(b) Solve the Poisson equation
$$\mathbf{u}_{xx} + \mathbf{u}_{yy} = -81 xy$$
, $0 < x < 1$, CO3-App (16) $0 < y < 1$, $u(0,y) = 0$, $u(x,0) = 0$, $u(1,y) = 100$, $u(x,1) = 100$ and $u(x,1) = 100$

- 19. (a) (i) Verify the vectors (1,2,-3), (2,5,1), (-1,1,4) in \mathbb{R}^3 is a basis of CO4-App (8)
 - (ii) If $T : \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformation defined by CO4-App (8) $T(a_1, a_2) = (a_1 a_2, 0, 0)$ then find nullity(T), rank(T), Is T one-to-one? Is T onto? Also check the rank nullity theorem.

Or

- (b) (i) Find the dimension of the subspace spanned by the vectors CO4-App (8) (2,0,1), (-1,0,1), (1,0,2) in $V_3(R)$
 - (ii) Find the matrix of the linear transformation CO4-App (8) $T: V_2(R) \to V_3(R)$ defined by T(a,b) = (a-b,2a,3a+2b) for the standard basis of $V_2(R)$
- 20. (a) (i) Show that the following function defines an inner product on $V_2(\mathbf{R})$ where $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$ and $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2)$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 6 \mathbf{x}_1 \mathbf{y}_1 + 7 \mathbf{x}_2 \mathbf{y}_2$ (ii) If $\mathbf{x} = (2, 1 + \mathbf{i}, \mathbf{i})$ and $\mathbf{y} = (2 \mathbf{i}, 2, 1 + \mathbf{i})$ then verify CO5- App (8)

Or

Schwarz's inequality.

(b) Apply Gram-Schmidt process to construct an orthonormal basis CO5- App (16) for $V_3(R)$ with the standard inner product for the basis $\{v_1, v_2, v_3\}$ where $v_1 = (1, -1, 0)$, $v_2 = (2, -1, -2)$ and $v_3 = (1, -1, 2)$