\sim				ì
\mathbb{C}	Reg. No. :			1

Question Paper Code: 96401

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023

Sixth Semester

		Sixtii Sein	CStC1		
	I	Electronics and Communi	ication Engineering	3	
	19UE	C601– WIRELESS COM	MUNICATION S	SYSTEMS	
		(Regulatio	ns 2019)		
Dur	ation: Three hours			Maximum: 10	00 Marks
		Answer ALL Q	Questions		
		PART A - (5 x 1	= 5 Marks)		
1.	Mobile Assisted Hand	doff (MAHO) provides	CO1-U		
	(a) Faster handoffs		(b) Suitability for frequent handoffs		
	(c) MSC need not mo	nitor the signal strength	(d) All of the abo	ove	
2.	The angle at which no reflection occurs in the medium of origin				
	(a) Brewster angle	(b) Phase Angle	(c) Path Angle	(d) All of	the above
3.	amplifies the signal such that its level is well adjusted to the quantization at the subsequent ADC.				
	(a) Amplifier	(b) Rectifier (c) (Op amp (d) Auto	omatic Gain Cor	ıtrol
4.	Diversity technique				CO1- U
	(a) Provides significan	nt link improvement	(b) Needs training overhead		
	(c) Both of the mention	oned	(d) None of the mentioned		
5.	The data speed of Bluetooth is around				CO1- U
	(a) 1Mbps	(b) 2Mbps	(c) 3 Mbps	(d) 5Mbps	
		$PART - B (5 \times 3 = $	= 15 Marks)		
6.	Mention the significance of frequency reuse in cellular networks.				CO1- U
7.	. List the factors influencing small scale fading				CO1- U
8.	3. State the advantages of Offset-QPSK.				CO1-U

CO1-U

9. Write the advantages of LMS algorithm

10. What are the main functions of cognitive radio?

(16)

(8)

(8)

 $PART - C (5 \times 16 = 80 \text{ Marks})$

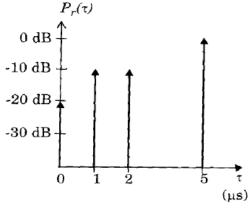
11. (a) Explain about cellular concept.

CO1- U

Or

(b) Explain about noise and interference limited system

CO1- U (16)


12. (a) (i) Explain Flat fading and frequency selective fading in detail.

CO1-U (8)

(ii) In the US digital cellular system, if fc=900MHZ and the CO2-App mobile velocity is 70km/hr. Calculate the received carrier frequency if the mobile (a) directly toward the transmitter(Positive Doppler Shift (b) directly away from the transmitter(Negative Doppler shift) and (c) in a direction perpendicular to the direction of the arrival of the transmitted signal.

Or

(b) (i) Calculate the mean excess delay, rms delay spread and the CO2-App maximum excess delay (10dB) for the multipath profile given in the figure below. Estimate the 50% coherence BW of the channel. Would this channel be suitable for GSM service without the use of an Equalizer.

- (ii) Explain RMS delay spread, Maximum excess delay, Mean CO1-U (8) Excess delay and Coherence Bandwidth,
- 13. (a) What is QPSK? Derive the bit error probability of QPSK and CO1-U (16) also explain the constellation diagram of it.

Or

(b) Explain Direct sequence Spread spectrum in detail

CO1- U

(16)

14. (a) Explain diversity techniques used in wireless CO1- U (16)space communication. Or Explain the training A generic adaptive equalizer in detail. (b) CO1- U (16)15. (a) What is cognitive radio in 5G? Explain in detail CO1- U (16) How does the Millimeter Wave Technology in 5G varies from CO1- Ana (b) (16)Microwave technology?