4	_	
Į		

Reg. No. :			
------------	--	--	--

Question Paper Code: U4402

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023

Fourth Semester

Electronics and Communication Engineering

	21UEC402- ELECT	ΓROMAGNETIC FI	ELDS AND TRAI	NSMISSION LINES	
		(Regulatio	on 2021)		
Dur	ation: Three hours			Maximum: 100	Marks
		Answer ALL	Questions		
		PART A - (5 x	1 = 5 Marks)		
1.	In free space, the Poisso	on equation becomes			CO1- U
	(a) Maxwell Equation		(b) Laplace equat	ion	
	(c) Ampere equation		(d) Steady state equation		
2.	Electromagnetic waves format?	s are represented in	which of the f	following	CO1-U
	(a) Longitudinal waves		(b) Transverse waves		
	(c) Sinusoidal waves		(d) Surface wave	ès .	
3.	Condition for cut off fre	equency			CO1-U
	(a) $Z_1 = 0$	(b) $Z_1 = -4Z_2$	$(c) Z_1 = Z_2$	(d) Both (a) and (b)
4.	A line terminated in its and thus no nodes is	-	ance has no standi	ng waves	CO1-U
	(a) Distorted	(b) Transmission	(c) Smooth	(d) None	
5.	The mode of wave prosupport are	opagation that a par	rallel plate waveg	guide can	CO1-U
	(a)TEM,TE,TM modes	(b) TM,TE modes	(c) TEM,TM 1	modes (d) TEM,TE	modes

- $PART B (5 \times 3 = 15 Marks)$
- 6. Write the integral form of ampere circuital law for static and time varying CO1-U fields.
- 7. What is the Difference between displacement current and conduction current? CO1-U

- 8. A constant k low pass filter has a cut off frequency of 10 kHZ. The design CO2-App impedance is 600 ohms. Find the value of L
- 9. Mention the relation between Z0 and primary constants.

CO1-U

10. A wave is propagated in the dominant mode in a parallel plane waveguide. CO1-U The frequency is 6 GHz and the plane separation is 4 cm. Calculate the cut-off frequency in the waveguide

$$PART - C$$
 (5 x 16= 80Marks)

11. (a) Solve the Laplace equation for the potential field in homogenous CO2-App (16) region between two coaxial cable with radius a,b and V=V₀ at r=a and V=0 at r=b. Find the capacitance per unit length between them.

Or

- (b) Derive the expression of Maxwell equation for static and time CO2-App varying Fields for both electrostatic and magneto static fields by applying suitable theorems
- 12. (a) The equation for uniform plane wave travel in free space given in CO4- Ana (16) phase form. The electric field is given by $E_y = 10.4e^{j(2\pi*10^9t \beta x)}$ $\mu V/m$.
 - (i) Analyze the direction of propagation of uniform plane wave for different parameters
 - (ii) Phase velocity
 - (iii) Phase constant
 - (iv) Propagation constant
 - (v) Expression for magnetic field in phasor form

Or

- (b) A lossy dielectric has μ_r =1, ϵ_r =50 and σ =60 mho/m at 15.9 MHz. CO4- Ana (16) Calculate the attenuation constant, phase constant and Propagation Constant, wavelength, velocity of propagation for uniform plane wave is travelling through that particular medium.
- 13. (a) Model the characteristic impedance of T network with Open and CO3- App (16) short circuit impedance condition

Or

(b) Design low pass filter having a cut off frequency of 5000Hz and CO3 -App (16) design impedance of 600 ohms. The frequency of infinite attenuation is $1.25f_c$.

- 14. (a) A 65 Ω lossless used at a frequency where wavelength 80 cm CO5- Ana (16) terminated by load of 120 + j70 Ω . Analyze the reflection coefficient, VSWR and input impedance using smith chart.
 - (b) Analyze a single stub match for a load of 150+j225 ohms for a 75 CO5 -Ana (16) ohms line at 500 MHz using smith chart.
- 15. (a) Compare the field equations for TE waves between parallel planes. CO6-Ana Or
 - (b) Determine the solution of electric and magnetic fields of TE waves CO6-Ana guided along rectangular waveguide. (16)