Λ
\Box

Reg. No.:										
-----------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 94022

B.E./B.Tech. DEGREE EXAMINATION, NOV 2023

		For	urth Semester			
		Electronics and C	Communication Engineer	ring		
		19UMA422 -	Probability and Statistics	S		
		(Reg	gulations 2019)			
Dur	ation: Three hours			Maximum: 100	Mark	S
		Answe	er ALL Questions			
		PART A -	$(10 \times 1 = 10 \text{ Marks})$			
1.	The r th moment about	t origin is				CO6-U
	(a) $\mu(X)$	(b) $\mu(X^2)$	(c) $\mu(X')$	(d) None	of the	above
2.	The limiting form of	a Binomial distrib	oution is			CO6-U
	(a)Exponential	(b) Poisson	(c) Normal	(d) None	of the	above
3.	Large sample size is					CO6-U
	(a) 30	(b) >30	(c) < 30	(d) none of	the ab	ove
4.	The degrees of freedo	om for the sample s	size n= 25 in t test is	·		CO6-U
	(a) 20	(b) 22	(c) 24	(d)	26	
5.	Choose the correction	factor				CO6- U
	(a) T^2N	(b) T/N	(c) T^2/N	(d) TN		
6.	SSE for Latin square	design is				CO6-U
	(a) TSS-SSC-SSR	(b) TSS-SSC	(c) 0	(d) TSS-SSC-S	SSR-S	SSK
7.	If the Random Proce $R(\tau) = 16 + 9e^{- \tau }$ The	, , , , ,	ean has Auto correlation he process is	on function	(CO4-App
	(a) 16	(b)25	(c) 6	(d)	9	
8.	Autocorrelation funct	ion is maximum at	t =			CO6-U
	(a) 0	(b) 1	(c) -1	(d)	∞	

The system is said to be stable if

CO6-U

(a)
$$\int_{-\infty}^{\infty} h(t) dt < \infty$$
 (b) $\int_{-\infty}^{\infty} h(t) dt > \infty$ (c) $\int_{-\infty}^{\infty} h(t) dt > 0$

$$(b) \int_{0}^{\infty} h(t) dt > \infty$$

$$(c) \int_{0}^{\infty} h(t) dt > 0$$

None of the above

10. The average power of the auto correlation function is $R_{xx(\tau)=3e^{-3|\tau|}}$

CO6-U

(a) 3

(b) 6

(c)2

(d) 0

PART - B (5 x 2= 10Marks)

- The mean and standard deviation of the binomial distribution 20 and 4 CO1-App respectively, Calculate the value of the parameter 'n'.
- 12. A sample of size 10 has mean 58, standard deviation 18.4 and population mean CO2-App 50, Compute the calculated value of 't' distribution.
- 13. What are the basic principles in the design of experiment?

CO6-U

State any two properties of an auto correlation function

CO6-U

15. If μ_x =0 then compute the value of μ_y

CO5-App

(8)

(8)

16. (a) (i) Obtain the Correlation coefficient for the following heights (in CO1-App (8)inches) of fathers X and their sons Y.

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

(ii) The number of monthly breakdowns of a computer is a R.V. CO1-App having a Poisson distribution with mean equal to 1.8. Find the Probability that his computer will function for a month (a) Without a breakdown (b) With only one breakdown (c) With at least one breakdown

Or

- (i) State and Prove the memory less property for an Exponential CO1-App (8)distribution
 - (ii) In a large consignment of electric bulbs 10 % are defective. A CO1- App random sample 20 bulbs are taken for inspection. Find the probability that (a) all are good bulbs (b) exactly three defective bulbs.

17. (a) Two researchers A and B adopted different techniques while rating CO2-App (16) the student's level. Identify the Sampling distribution; Can you say that the techniques adopted by them are significant?

Researchers	Below Average	Averag e	Above Average	Genius	Total
A	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300

Or

(b) Two independent samples of sizes 9 and 7 from a normal population CO2 -Ana (16) had the following values of the variables.

Sample I	18	13	12	15	12	14	16	14	15
Sample II	16	19	13	16	18	13	15		

Identify the sampling distribution, Do the estimates of the population variance differ significantly.

18. (a) A completely randomized design experiment with 10 plots and 3 CO3-Ana (16) treatments gave the following results:

Plot No	1	2	3	4	5	6	7	8	9	10
Treatment	A	В	С	A	С	С	A	В	A	В
Yield	5	4	3	7	5	1	3	4	1	7

Or

(b) The following is a Latin square of a design, when four varieties of CO3-Ana (16) seeds are being tested, Analyze the given data Set up the analysis of variance table and State your conclusion.

A 105	B 95	C 125	D 115
C115	D 125	A 105	B 105
D 115	C 95	B 105	A 115
B 95	A 135	D 95	C 115

- 19. (a) (i) If the auto correlation function of the random binary transmission CO4-App (8) is given by $\mathbf{R}_{XX}(\tau) = \begin{cases} 1 |\tau| & ; |\tau| \le 1 \\ 0 & ; |\tau| \ge 1 \end{cases}$ Compute the Power spectral density function.
 - (ii) Using the properties of auto correlation function, compute the CO4-App (8) Mean, Mean Square value and Variance of $R_{xx}(\tau) = \frac{25\tau^2 + 36}{4 + 6.25\tau^2}$

Or

- (b) If the power spectral density of a continuous process is CO4-App (16) $S_{xx}(\omega) = \frac{10 \omega^2 + 35}{(\omega^2 + 4)(\omega^2 + 9)}, \text{ Compute the auto correlation function and}$ the mean square value of the process
- 20. (a) A random process X (t) is the input to a linear system whose impulse CO5-App response is $h(t) = 2e^{-t}$; $t \ge 0$. If theinput auto correlation function of the process is $R_{xx(\tau)=e^{-2|\tau|}}$ Compute the power spectral density and auto correlation function of the output process.

Or

(b) If the input to a time invariant stable linear system is a wide sense CO5-App stationary process. Prove that the output will also be a wide sense stationary process