
С	Reg. No. :											
	Question Pap	er Co	de: 9	9440	3							
B.E.	/ B.Tech. DEGREE E	XAMI	NATI	ON, I	NOV	y 202	23					
	Fourth	Semest	er									
	Electronics and Comr	nunicat	ion Ei	ngine	ering	g						
	19UEC403-SIGNA	ALS AN	JD SY	STE	MS							
	(Regu	lation 2	.019)									
Duration: Three hours	Duration: Three hours			Maximun						n: 100 Marks		
	Answer AI	LL Ques	stions									
	PART A - (5	x 1 = 5	Mark	(s)								
1. A resistive-capacitiv	A resistive-capacitive network is asystem.									CO1-U		
(a) causal & static	(a) causal & static (b) Non causal & static											
(c) causal &dynamic	(c) causal &dynamic (d) Non causal &dyn						nic					
2. Fourier transform of a Gaussian pulse is									CO1-U			
(a) Another Gaussian	n pulse	(b) Squared Sinc pulse										
(c) Sinc pulse		(d) Impulse train										
3. If F(s) = L[f(t)] = $\frac{2}{s^2}$	$F(s) = L[f(t)] = \frac{2(s+1)}{s^2 + 4s + 7}$ then the initial value of the signal is								CO	D3-App		
(a) 0	(b) 2) $\frac{1}{2}$	51811			(d)) infiı	nitv			
4. If the signal $x(t) =$	(a) 0 (b) 2 (c) $\frac{1}{2}$ (d) infinity If the signal $x(t) = cos(2000\pi t)$ is sampled at 5000 Hz such that CO4- App $x(n)=x(nT_s)$, what is the fundamental frequency of $x(n)$ in rad/sec?											
(a) 2π/5	(b) π	(c)	2π/8			(d) π/8						
5. The ROC $X(z)$ cannot	ot contain any									CO1- U		
(a) poles	(b) zeros	(c) poles or zeros (d) multiple poles										
	PART - B(5)	x 3= 15	Marl	(s)								
6. Sketch the signal $x(-$	(t+2) and $-x(t-5)$									CO1- U		

7.	Obtain the Fourier Transform of $sin w_0 t$. Draw its magnitude spectrum	CO3- App
8.	Derive the L.T. of the signal $u(t)^* u(t-1)$ using the convolution property	CO3-App
9.	State sampling Theorem.	CO1-U
10.	Define ROC. Illustrate the Z-transform pair.	CO1-U

PART – C (5 x 16= 80 Marks)

11. (a) Check whether the following systems are static/dynamic, CO1-U (16) causal/non-causal, linear/non-linear, time-variant/time-invariant (a) y (n) = n x(n) b) y(t) = $e^{x(t)}$ c) y[t] = cos x[t] Or

(b) Check all the system properties for the given
(i)
$$y(n) = x(n+1) - x(n-1)$$

(ii) $\frac{dy(t)}{dt} + 5ty(t) = x(t)$
(16)

12. (a) Obtain the Fourier Transform of the signal e^{-|t|} and plot its CO3-App (16) magnitude and phase spectrum.

Or

- (b) Find the Fourier transform of a rectangular pulse of duration T CO2- App (16) with amplitude A and draw its spectrum
- 13. (a) Consider a discrete time LTI system described by the difference CO3- App (16)

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = 2x(n)$$

equation

(a) Determine the frequency response of the system

(b) Find the impulse response of the system

(c) Determine its response to the input is

$$u(n) = \left(\frac{1}{4}\right)^n u(n).$$

Or

(b) Determine the Laplace Transform for double exponential function CO3- App (16) given by $x(t)=e^{-2|t|}$; also plot its region of convergence.

х

14. (a) A signal $\mathbf{x}(t) = \operatorname{SinC}(150\pi t)$ is sampled at a rate of a 100Hz b 200 CO4- Ana (16) Hz c 300 Hz. For each of these three cases, Explain if you can recover the signal $\mathbf{x}(t)$ from the sampled signal.

Or

- (b) A pressure gauge that can be modeled as an LTI system has a CO3- Ana (16) time response to a unit step input given by $(1-e^{-t}-te^{-t})u(t)$. For a certain input x(t), the output is observed to be $(2-3e^{-t}+e^{-3t})u(t)$. For this observed measurement, determine the true pressure input to gauge as a function of time.
- 15. (a) Determine the solution of the difference equation CO4- App (16) y(n) = 5/6 y(n-1) - 1/6 y(n-2) + x(n) for $x(n) = 3^n u(n)$ with initials conditions y(-1) = 1, y(-2) = 0. Or
 - (b) Find the Z-Transform of the given signal $x(n) = 0.5^{|n|}$ and plot its CO4- App (16) magnitude and phase spectrum.