4	1	7
۱		

Reg. No.:					

Question Paper Code: 94402

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023

Fourth Semester

Electronics and Communication Engineering

19UEC402- ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES

		(Regula	tion 2019)				
Dura	ation: Three hours			Maximum: 10	0 Marks		
		Answer ALI	Questions				
		PART A - (5 x	1 = 5 Marks)				
1.	For boundary between conductor and free space the field intensity inside a conductor is_						
	(a) 1	(b) infinity	(c) Zero	(d) constant			
2.	Electromagnetic wa	ves are produced by			CO1-U		
	(a) static charge	(b) accelerated charge	(c) moving charge	(d) charged	l particle		
3.	When the load imp transmission line	edance is not equal to c	characteristic impedance	ce of	CO2-U		
	(a) Insertion	(b) Reflection	(c) both a and b	(d) None of	of these		
4.	The points of zero v	oltage or current in the s	standing waves is		CO2- U		
	(a) Antinodes	(b) loops	(c) Nodes	(d) none	•		
5.	The velocity with w	which the energy propaga	tes along a guide is cal	led	CO2- U		
	(a) Group velocity	(b) Phase velocity PART – B (5 x	. , .	(d) none of t	hese		
6.							
7.	•						
8.							
9.	1						
10.							

$PART - C (5 \times 16 = 80 \text{ Marks})$

11. (a) Derive the expression for the capacitance of a coaxial cable using CO3- App (16)Laplace's equation Or (b) Solve the Laplace equation for the potential field in homogenous CO3- Ana (16)region between two concentric conducting spheres with radius a,b and V=V₀ at r=a and V=0 at r=b. Find the capacitance between concentric spheres. 12. (a) Derive the EM wave propagation parameters in Free space and CO2-App (16)also derive the expression for electric and magnetic field. (b) Derive the Transmission and reflection coefficient of uniform CO2- App (16)plane waves 13. (a) Design a low pass filter for T and π section having cut off CO3-App (16)frequency 2 Khz to operative with a terminated load resistance of 500 Or (b) Design m-derived low pass filter having a cut off frequency of CO3- App (16)5000Hz and design impedance of 600 ohms. The frequency of infinite attenuation is 1.25 fc 14. (a) A 70 Ω lossless used at a frequency where wavelength 80 cm CO5- Ana (16)terminated by load of $140 + j91 \Omega$. Find the reflection coefficient, VSWR and input impedance using smith chart (b) Derive the expression for single stub matching CO5- Ana (16)15. Determine the solution of electric and magnetic fields of TE CO6- Ana (a) (16)waves guided along rectangular waveguide.

(b) Derive the field equations for TM waves between parallel planes.

CO6- Ana

(16)