С	F	Reg. No. :						
Question Paper Code: U5401								
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023								
Fifth Semester								
Electronics and Communication Engineering								
21UEC501 - DIGITAL SIGNAL PROCESSING								
(Regulations 2021)								
Dura	Duration: Three hours Maximum: 100 Marks							
Answer ALL Questions								
PART A - $(5 \times 1 = 5 \text{ Marks})$								
1.	If x(n) and X(k) are an N-point DFT pair, then X(k+N)=? CO1-U							
	(a) X(-k) (b) -X(k)	(c) X(k)	(d) None of	of the a	abovo	e	
2.	The poles of Butterwor	th filter lies	in s-plane			CO1	- U	
	(a) Sphere (b) Circle	(c) Ellipse	(d) Parabo	ola			
3.	What is the value of α if the number of samples N=15 CO2-App							
	(a) 15 (b) 15/2	(c) 14	(d) 7				
4.	With n-bit binary the possible binary codes are,CO1-U							
	(a) 2^{n-1} (b) 2^{n+1}	(c) 2^{n}	(d) $2^{n/2}$				
5.	The MMRs of TMS320C5x processor can be directly addressed by, CO1-							
	(a) 7-bit address (b) 8-bit address	(c) 9-bit address	(d) 11-bit	addres	S		
PART - B (5 x 3 = 15 Marks)								
6.	Draw the basic butterfly structure for radix-2 DIT algorithm?						-U	
7.	What is prewarping? Why is it employed?					CO1	-U	
8.	How is the constant group delay and phase delay achieved in linear phase FIR filters?					CO1	- U	
9.	Compare fixed point and floating point number representation.					CO1	-U	
10.	How is fast computation achieved in DSPs?					CO1	-U	
PART – C (5 x 16= 80Marks)								
11.	11. (a) Compute 8-point DFT of the discrete time signal, $x(n)$ CO2-App (16) ={2,2,2,2,1,1,1,1} using Radix-2 DIT FFT.							

Or

- (b) Compute 8-point DFT of the discrete time signal, x(n) CO2-App (16) ={1,2,1,2,1,3,1,3} using Radix-2 DIF FFT.
- 12. (a) Use the Bilinear transformation to convert the analog filter CO4-App (16) with system function H(S) = s+0.1/(s+0.1)2+9 into a digital IIR filters. Select T=0.1s and compare the location of the zeros in H(Z) with the locations of the zeros obtained by applying the impulse invariant method in the conversion.

Or

- (b) Design a Chebyshev filter with a maximum pass band CO4-App (16) attenuation of 2.5db at $\Omega p=20$ rad/sec and stop band attenuation of 30db at $\Omega s=50$ rad/sec. (Analog Type-1 filter)
- 13. (a) Compute a linear phase FIR High pass filter using CO2-App (16) rectangular window with cut off $\omega c = 0.8 \pi$ rad/sample by taking N=7 samples

Or

- (b) Design a linear phase FIR Band pass filter using a hamming CO2-App (16) window with cut off ωc =0.4π to 0.6π rad/sample by taking N=9 samples.
- 14. (a) For second-order IIR filter, $H(z) = 1 / (1-0.5z^{-1})(1-0.45z^{-1})$. CO2-App (16) Study the effect of shift in pole location with 3 bit Coefficient representation in direct and cascade form.

(b) Find the output round off noise power for the following CO2-App (16) transfer function where $H(z) = H_1(z)H_2(z)$

$$H_1(z) = \frac{1}{1 - a_1 z^{-1}}$$
 and $H_2(z) = \frac{1}{1 - a_2 z^{-1}}$
 $a_1 = 0.5$ and $a_2 = 0.6$

15. (a) With a neat functional block diagram, outline the architecture CO1-U (16) of TMS320C5X processor in detail.

Or

(b) List the addressing modes of TMS320C5X processor with CO1-U (16) relevant examples.