С		Reg. No. :]
		Question Pa	per	· Co	de:	99 4	102						
	B.E. /	B.Tech. DEGREE EZ	XAI	MIN	ATI	ON, I	NOV	202	3				
		Elec	ctive	e									
	Ι	Electronics and Comm	nun	icatio	on E	ngine	eering	5					
		19UEC902- PRINCP	ILE	S OI	FRC	BOI	FICS						
		(Regulat	ion	2019))								
Duration: Three hours									axim	um:	100	Mar	ks
		Answer AL	LQ	uest	ions								
		PART A - (5 2	x 1 =	= 5 N	/lark	s)							
1.	If a robot has 3 legs, then the number of possible events is											CC)1-U
	(a) 24	(b) 720		(c)	120				(d)) 240)		
2.	The unit of linear acce	eleration is										CO	2- U
	(a) kg-m	(b) m/s		(c) 1	n/s2	d		(d)	rad/s	s22			
3.	The inertia matrix of a rigid body or a link										CO	3- U	
	(a) is always positive definite												
(b)is always symmetric													
	(c)is an orthogonal matrix												
	(d) represents the mas	s distribution in 3D s	pace	e									
4.	Gross motion planning problem is known a?										CO	4 - U	
	(a) Fine motion planning problem. (b) Free space moti						tion	planı	ning	prot	olem.		
	(c) Compliant motion planning problem				(d) none of the above.								
5.	What is necessity for a lot of sensible mobile robotics funaction								CO	5- U			
	(a) Map discovery	(b) Geomatric Maps	5	(c) F	erce	ptul	maps		(d)	Sens	oria	l maj)S
		PART – B (5 2	x 3=	= 15]	Mark	cs)							
6.	What is meant by robot anatomy?											CC)1 U
7.	What is meant by unit Quaternion										CC)2 U	
8.	Define Linear velocity.											CC)5 U

9.	Defi	ine path.	CO3 U									
10.	Mer	tion the need of continuous Trajectory Recording	CO3 U									
	PART – C (5 x 16= 80 Marks)											
11.	(a)	Explain the different types of robots with neat diagrams Or	CO1-U	(16)								
	(b)	Discuss about micro machines in robotics	CO1-U	(16)								
12.	(a)	Derive the Denavit- Hartenberg representation of forward kinematic equations of robots	CO2- App	(16)								
	(b)	Or Derive the direct kinematics equation of SCARA robot using D H transformation matrix.	CO2- App	(16)								
13.	(a)	Express the jacobian matrix for motion of end-effecter generated by a rotary joint and prismatic joint. Or	CO1-U	(16)								
	(b)	Explain the following: (i) Wrist and arm singularity (ii) Linear and Angular velocities	CO1-U	(16)								
14.	(a)	Implement interpolation function with the help of p-Degree polynomial and discuss its uses.	CO3- Ana	(16)								
	(b)	Express the time history of position velocity and acceleration for blended trajectory for point-to-point motion with via points.	CO3- Ana	(16)								
15.	(a)	Discuss in detail Methods of Robot programming with suitable example.	CO1-U	(16)								
	(b)	Or Explain in detail Robot program as a path in space with suitable example	CO1-U	(16)								