Question Paper Code: U2M03

B.E./B.Tech. DEGREE EXAMINATION, NOV 2023

Second Semester

Computer Science and Engineering

21UMA203- Differential Equations and Complex analysis

(Regulations 2021)

(Common to information technology)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

1.	$\frac{1}{(D-m)^2}e^{mx}$	=		COI-A
	(a)) <i>xe^{mx}</i>	(b) $\mathbf{x}^2 e^{mx}$	(c) $\frac{x^2}{}e^{mx}$	(d) $\frac{x^2}{}e^{mx}$

2. The complementary function of (4D²- 3D-1)y=2 sin 2x is ____ CO6-U

(a)
$$Ae^{x} + Be^{-\frac{x}{4}}$$
 (b) $Ae^{-x} + Be^{5x}$ (c) $(A+Bx)e^{2x}$ (d) $Ae^{x} + Be^{4x}$

3. $\operatorname{Div}_{r} = \underline{\hspace{1cm}}$

(a) 0 (b) 1 (c) 3 (d) $\frac{1}{r}$

4. Divergence of vector $\mathbf{x}^2 \mathbf{i} + \mathbf{y}^2 \mathbf{j} + \mathbf{z}^2 \mathbf{k}$ at (1, 2, -3) is _____ CO2-App

(a) 8 (b) 4 (c) -3 (d) 0

5. The critical point of the transformation $w = z + \frac{1}{z}$ are ____ CO3- App

a) ± 1 b) ± 2 c) $\pm i$ d) -i

6. The function $f(z) = \frac{1}{z^2+4}$ is not analytic at z =______. CO3- App

(a) 2 b) -2 c)2i d) $\pm 2i$

7. Simple pole is a pole of order _____ CO6-U

(a) 1 (b) 4 (c) 3 (d) -4

8. $\int_{C} \frac{e^{z}}{z-2} dz$ where C is the unit circle with centre as origin is

- (a) 0 (d) 1 (c) 2 (d) π
- 9. The PDE obtained from z = (x+a)(y+b) is __. CO5-App

 (a) 3z = px + qy (b) py qx = 0 (c) z = pq (d) px+qy = 0
- 10. The subsidiary equations of Lagrange's linear equation is --- CO5-U
- (a) $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ (b) $\frac{dx}{P} + \frac{dy}{Q} + \frac{dz}{R}$ (c) $\frac{dx}{P} \frac{dy}{Q} \frac{dz}{R}$ (d) Pp +Qq= R

$$PART - B$$
 (5 x 2= 10Marks)

12. Compute
$$\nabla \varphi$$
, if $\varphi = x^2 + y^2 + z^2$ at $(1, -1, 1)$.

13. Prove that
$$u = e^x \cos y$$
 is harmonic function CO3-App

- 14. Using Cauchy's integral formula, Evaluate $\int_{c} \frac{z}{z-2} dz$ where C is |z|=1
- 15. Find the particular integral of $(D^2 2DD' + D'^2)Z = \cos(x 3y)$ CO5-App PART C (5 x 16= 80Marks)

16. (a) (i) Solve
$$(D^2 + 2D + 2)y = e^{-2x} + \cos 2x$$
 CO1-App (8)
(ii) Using method of variation of parameters solve CO1- App (8)

$$(D^2 + a^2)y = Cosec ax$$

11. Find the Wronskian of y_1 , y_2 of $y'' - 2y' + y = e^x \log x$

(b) (i) Solve
$$(x^2D^2 - xD + 1)y = \left(\frac{\log x}{x}\right)^2$$
 CO1- App (8)

- (ii) A colony of bacteria of growing exponentially. At time t=0 it CO1- App has 10 bacteria in it and at time t=4 it has 2000. At what time will it have 100,000 bacteria?
- 17. (a) Verify Green's theorem in the XY plane for $\int_C (3x^2 8y^2 dx + 4y 6xy dy)$ where C is the boundary of the region defined by $x = y^2$, $y = x^2$.

CO1-App

(b) Verify Gauss divergence theorem for the vector function
$$\vec{F} = CO2$$
 -App (16) $4xz\vec{i} - y^2\vec{j} + yz\vec{k}$ over the cube bounded by $x = 0, y = 0, z = 0$ and $x = 1, y = 1, z = 1$

- 18. (a) (i) Determine the analytic function whose real part is $\frac{\sin 2x}{\cosh 2y \cos 2x}$ (8)
 - (ii) Determine the image of |z 2i| = 2 under the transformation CO3-App (8) $w = \frac{1}{z}$

Or

- (b) (i) If f(z)=u+iv is an analytic function then Prove that CO3-App $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$
 - (ii) Determine the bilinear transformation which maps z = 1,i,-1 CO3-App respectively onto w = i,0,-i
- 19. (a) (i) Using Cauchy's integral formula, Evaluate $\int_{c}^{z+1} \frac{z+1}{(z-3)(z-1)} dz$ CO4-App (8) where C is the circle |z|=2
 - (ii) Evaluate $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ in Laurent's series valid in the CO4-App region 1 < |z+1| < 3

Or

- (b) Using Contour integration Prove that $\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{a + b} a > b > 0$ (16)
- 20. (a) (i) Solve: $(D^2 3DD' + 2D'^2)Z = e^{3x-2y} + Sin(3x + 2y)$ CO5-App (8) (ii) Solve: x(y-z)p + y(z-x)q = z(x-y) CO5- App (8)

(b) A tightly String with fixed end points x=0 and x=i is initially at CO5-App rest in its equilibrium position. If its set vibrating giving each point at velocity $\lambda(i x-x^2)$. Determine the displacement function y(x,t).