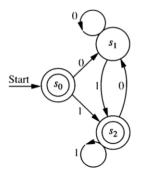
C		Reg. N	0.:				
		Question	Paper Code: 9550)4			
		B.E./B.Tech. DEGR	EE EXAMINATION, N	IOV 2023			
		Ι	Fifth Semester				
		Compute	r Science Engineering				
		19UCS504 – TH	EORY OF COMPUTA	TION			
		(R	egulation 2019)				
Dur	ation: Three hours			Maximum: 10	00 Marks		
		Answ	ver ALL Questions				
		PART A	A - $(5 \times 1 = 5 \text{ Marks})$				
1.	Let L be a set accepted by a nondeterministic finite automaton. The number $CO1-1$ of states in non-deterministic finite automaton is $ Q $. The maximum number of states in equivalent finite automaton that accepts L is						
	(a) Q	(b) 2 Q	(c) 2 raise to pow	wer $ Q $ (d) $4 Q $			
2.	Regular expression Φ^* is equivalent to						
	(a) <i>e</i>	(b) Φ	(c) 0	(d) 1			
3.	Given the following Context-Free Grammar (CFG), $G = (\{S, T\}, \{(,), a, CO1-b\}, S, P)$ with productions P: S -> (T) a						
	T ->(S) elements of L(G)		wing are in the languag	e of G (i.e. are			
	(a) ((a))	(b) (b))	(c) a(b)	(d) b			
4.	The push down automata indicate the acceptance of input string in terms of CO1-						
	(a) Final state	(b) Empty Stack	(c) Both (a) and (b)	(d) None of the	mentioned		
5.	TM is a mathema	tical model of			CO1-		
	(a) Calculator	(b) Computer	(c) Compiler	(d) Interpre	eter		
		PART –	B (5 x 3= 15 Marks)				
		171101	D (5 X 5 15 Marks)				

7. Write RE for CO1- R (i) All strings beginning with '11 ' and ending with 'ab' (ii) Set of all strings that end with '1' and has no substring '00' (ii)Set of all strings over $\{0,1\}$ with 3 consecutive 1's. Find the language of the grammar $S \rightarrow aSb \mid aAb$, $A \rightarrow bAa$, $A \rightarrow ba$. CO₅- Ana 8. 9. Define ID of PDA. CO1- R 10. Design a TM for Zero function. CO4- App $PART - C (5 \times 16 = 80 Marks)$ 11. (a) (i) Design a DFA to accept strings of a's and b's having even no of CO4-App (6) a's and odd no of b's and to check whether the string w1=abaa

is accepted or not.

(ii) Construct the equivalent DFA for the following NFA. CO2-App (10)


	0	1					
->p	{p,q}	{ p }					
q	{p,q} {r,s}	{t}					
r	{p,r}	{t}					
*s	φ	φ					
*t	φ	φ					
Or							

(b) (i) Convert the following ε -NFA to it's equivalent DFA

	3	0	1	2
->q ₀	$\{q_1\}$	$\{q_0\}$	φ	φ
q_1	$\{q_2\}$	φ	$\{q_1\}$	¢
*q ₂	φ	φ	φ	$\{q_2\}$

- (ii) Construct NFA with ε, that end with string 11 for the set of all CO4-App (4)Strings {0,1}
- 12. (a) (i) Verify the following languages are regular or not using Pumping CO2-App (8) lemma.
 - (a) L={ $0^{n}1^{n} / n \ge 0$ }
 - (b) L={ WW^R / W is in {a,b}* }.
 - (ii) Construct a regular grammar that generates the language CO5-Ana (8) accepted by this finite state automaton.

CO2- App (12)

Or

- (b) Find the minimized DFA for the following regular expression (a/b)* CO2- App (16) abb.
- 13. (a) (i) Consider the following productions: CO2- App (8) $S \rightarrow aB \mid bA$ $A \rightarrow aS \mid bAA \mid a$ $B \rightarrow bS \mid aBB \mid b.$

For the string aaabbabbba, find a leftmost derivation, rightmost derivation and draw derivation tree.

(ii) Show that the grammar S->a | abSb | aAb, ,A->bS | aAAb is CO5-Ana (8) ambiguous.

Or

(b) (i) Convert the Grammar G= ({ A1, A2, A3}, {a,b}, P, A1} into CO2- App (10) Greibach Normal Form, where P consists of the following:

- (ii) Find a Grammar in Chomsky Normal Form equivalent to CO2- App (6)
 S-> aAbB;
 A ->aA | a; B->bB|b.
- 14. (a) (i) Construct a PDA for the language $L=\{a^mb^m | m \ge 0\}$ CO4- App (8)
 - (ii) Construct a PDA for the given grammar and check the validation CO5-Ana (8) of "**010**"

$$S \rightarrow A1B$$

$$A \rightarrow 0A \mid \varepsilon$$

$$B \rightarrow 0B \mid 1B \mid \varepsilon$$

- Or (b) (i) Convert the PDA M=({q0,q1}, {0,1}, {X,Z0}, δ , q0,Z0, Φ) into CO5-Ana (8) Grammar. Where δ is defined as a. $\delta(q0,0,Z0) = (q1,XZ0)$ b. $\delta(q0,0,X)=(q1,XX)$ c. $\delta(q0,1,X) = (q1, \epsilon)$ d. $\delta(q1,1,X) = (q1, \epsilon)$ e. $\delta(q1, \epsilon, X) = (q1, \epsilon)$ f. $\delta(q1, \epsilon, Z0) = (q1, \epsilon)$ (ii) Prove that "If L is a context-sensitive language, then L is CO5-Ana (8) accepted by a linear bounded automaton".
- 15. (a) Design a Turing Machine M for $f(x,y)=x^*y$ and x,y are stored in CO4- App (16) the tape in the form $o^x 1 o^y 1$.

Or

(b) Construct a TM to perform reverse operation. CO4- App (16)