Reg. No. :

Question Paper Code: 99215

B.E./B.Tech. DEGREE EXAMINATION, NOV 2023

Professional Elective

Computer Science and Engineering

19UCS915 - IMAGE PROCESSING

(Régulations 2019)

Duration: Three hours Maximum: 100 Marks

Answer All Questions

 $PARTA = (10 \times 2 = 20 \text{ Marks})$

	PART A - $(10 \times 2 = 20 \text{ Marks})$				
1.	. Define sampling and quantization				
2.	Find the RGB coordinate of a color at (0.25, 0.5, and 0.75) in CMY space.				
3.	What is the difference between spatial and frequency domains in filtering?	CO1- U			
4.	List the different types of spatial filters				
5.	5. How the spatial domain signal is converted into frequency domain?				
6	6 Write a matlab code for median filter.				
7	7 What is image segmentation?				
8	8 Enumerate the steps in the region growing algorithm.				
9	9 What are the five morphological operations?				
10	0 What are the advantages of morphological image processing?				
	PART – B (5 x 16= 80 Marks)				
11.	(a) Use the following components R= 24, G=98 and B=118 and CO2-convert into HSI component, CMY, YIQ	App (16)			

Or

(b) Consider the two image subsets S1 and S2 shown below. For CO2-App (16) V={1}, determine how many 4-connected, 8-connected,m-connected Components there are in S1 and S2. Are S1 and S2 adjacent?

		S	\vec{y}_1			S	2		
0	0	0	0	0	0	0	1	1	0
1	0	0	1	0	0	1	0	0	1
1	0	0	1	0	1	1	0	0	0
0	0	1	1	1	0	0 1 1 0	1	1	1
0	0	1	1	1	0	0	1	1	1

12. (a) Consider the following image and perform different types of CO1-U (16) basic gray level transformation -Logarithmic(c=1 and c=L/log10(1+L)

Power -low (Gamma=0.5)

Digital negative

$$\begin{bmatrix}
4 & 4 & 4 & 4 & 4 \\
3 & 4 & 5 & 4 & 3 \\
3 & 5 & 5 & 5 & 3 \\
3 & 4 & 5 & 4 & 3 \\
4 & 4 & 4 & 4 & 4
\end{bmatrix}$$

Or

- (b) Obtain Histogram and Histogram equalization for a given image CO1-U $(4 \times 4) 4$ bit per pixel is given by
 - (i) 4 3 5 2 3 6 4 6 2 2 6 5 7 6 4 1

10	12	8	9
10	12	12	14
12	13	10	9
14	12	10	12

13. (a) Convert the given spatial domain image using Fourier transform CO2 -App (16) and perform Ideal low pass filter to smoothen the image choose D0 as 0.5. Show the step by step procedure for doing the same.

1	0	1	0
1	0	1	0
1	0	1	0
1	0	1	0

Or

(b) Convert the given spatial domain image using Fourier transform CO2 -App and perform Gaussian low pass filter to smoothen the image choose D0 as 0.5. Show the step by step procedure for doing the same.

1	0	1	0
1	0	1	0
1	0	1	0
1	0	1	0

14. (a) Construct the Huffman code for the given image

(16)

(16)

$$\begin{bmatrix}
4 & 4 & 4 & 4 & 4 \\
3 & 4 & 5 & 4 & 3 \\
3 & 5 & 5 & 5 & 3 \\
3 & 4 & 5 & 4 & 3 \\
4 & 4 & 4 & 4 & 4
\end{bmatrix}$$

Or

(b) Detect edge in the following image using strength (Magnitude) CO2- App and direction of gradient. Use prewitt operator. Find an edge in horizontal direction. (Mx(x,y)=

-1	-1	-1
0	0	0
1	1	1

f(x,y)=

0	30	60
5	32	62
10	38	64

15. (a) Explain the morphological transform that uses morphological CO1-U (16)

erosion operation for detecting a given pattern in an image Or

(b) Explain about region filling for morphological processing with a CO1- U (16) suitable example