
	Reg. No. :						
Question Paper Code: U3028							
B.E./B.Tech. DEGREE EXAMINATION, NOV 2023							
Third Semester							
Computer Science and Design							
21UMA328- DISCRETE MATHEMATICS							
(Common to Aritificial Intelligence & Data Science Engineering)							
(Regulations 2021)							
Duration: Three hours Maximum: 100							
Answer All Questions							
PART A - $(10 \text{ x } 2 = 20 \text{ Marks})$							
1.	Construct the truth table for $\neg (P \rightarrow Q)$		CO1-	App			
2.	Use indirect method, prove that $\neg p \land \neg q \Rightarrow \neg (p \land q)$						
3.	3. In how many ways can letters of the word "THUNAIEZHUTHU" be arranged			CO2-App			
4.	4. Compute the particular solution of $a_n + 6a_{n-1} + 5a_{n-2} = 2$			CO2-App			
5.	5. Define the order of a group			CO6- U			
6	Compute order of all elements of the group (Z_5, \oplus_5)		CO6-	CO6- U			
7	Define Eulerian path and Eulerian circuit		CO6-	CO6-U			
8	Define a cycle	CO6-U		U			
9	Write absorption laws in Boolean algebra	CO6- U					
10	Define a distributive lattice		CO6-	U			
	PART – B (5 x 16= 80 Marks)						
11.	(a) (i) Calculate PCNF and PDNF for $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$	CO	1- App	(8)			
	(ii) Using the rules of inference derive & using CP Rule.	CO	l- App	(8)			
	$P \to (Q \to S), \neg R \lor P, Q \Longrightarrow R \to S$						

	(b)	(i) Prove the following by Indirect Method. $B \rightarrow Q = Q \rightarrow B = (B + B) - B + B = B$	CO1- App	(8)
		$P \to Q, Q \to R, \neg (P \land R), P \lor R \Rightarrow R$ (ii) Find the direct proof of $P \to R, Q \to S, P \lor Q \Rightarrow S \lor R$	CO1- App	(8)
12.	(a)	(i) How many bit of strings of length 10 contain (a) exactly four 1's(b)atmost four 1's (c) atleast four 1's (d)an equal number of 0's	CO2 -App	(8)
		and 1's? (ii) Using generating functions Solve $a_n = 6a_{n-1} + 2^n$, $a_0 = 5$	CO2 -App	(8)
	(b)	Or (i) Solve $a_n - 6a_{n-1} + 9a_{n-2} = 3^n, a_0 = 1, a_1 = 1$	CO2 -App	(8)
		(ii) Calculate the number of positive integers not exceeding 1300 that are divisible by 2,3,5 or by 7	CO2 -App	(8)
13.	(a)	(i) Let G be a finite group of order 'n' and H be any subgroup of G. Then Show that the order of H divides the order of G. (i.e) $O(H) / O(G)$	CO3 -App	(10)
		(ii) Prove that (G,*) is abelian if and only if $(a * b)^{-1} = a^{-1} * b^{-1}$ Or	CO3 -App	(6)
	(b)	(i) A non empty subset H of a group (G,*) is a subgroup if only if $a * b^{-1} \in H$ for all $a, b \in H$	CO3 -App	(8)
		(ii) Prove that intersection of two subgroup is also a subgroup of G	CO3 -App	(8)
14.	(a)	(i) Verify that following are isomorphic graph are not.	CO4 -App	(8)
		P E ↓ d		

(ii) Define Eulerian graph and Hamiltonian graph. CO4 - App (8) Give an example of

- (a) Eulerian but not Hamiltonian
- (b) Hamiltonian but not Eulerian
- (c) Both Eulerian and Hamiltonian
- (d) non Eulerian and non Hamiltonian

Or

(b) (i) Prove that a given connected graph is Eulerian if and only if all CO4 -App (8) the vertices of G are of even degree.

(ii) If G is a simple graph with n vertices with minimum degree CO4 -App (8) $\delta(G) = \left\lceil \frac{n}{2} \right\rceil$ show that G is connected

15. (a) (i) If
$$(L, \wedge, \vee)$$
 $(a \vee b) \wedge (b \vee c) \wedge (c \vee a) = (a \wedge b) \vee (b \wedge c) \vee (c \wedge a)$ CO5-App (8)

(ii) State and prove isotonic property CO5-App (8)

Or

11

(ii) Show that in any Boolean algebra, a=b if and only if CO5-App (8) ab' + a'b = 0