A		Reg. No. :							
Question Paper Code: U3027									
B.E./B.Tech. DEGREE EXAMINATION, NOV 2023									
	Third Semester								
Computer Science and Business system									
21UMA327- DISCRETE MATHEMATICS AND CACULUS									
(Regulations 2021)									
Dura	ation: Three hours				Maxir	num:	100	Mar	ks
		Answer Al	l Questions						
	PART A - $(10x \ 1 = 10 \ Marks)$								
1.	The truth value "If 71 i is a positive integer "	s prime then 3 is ev	en", The truth	value "	1 > 3 and	13		CO	1 - U
	(a) T,F (b) F,T	(c) T,T		(d) F,F	I			
2.	$P \rightarrow \neg Q$ is equivalent to)						CO	5- U
	(a) $\neg P \land Q$	(b) $P \land \neg Q$	$(\mathbf{C}) \neg (P \land Q)$		(d)	$P \lor \neg$	Q		
3.	If a bit string contains {0, 1} only, having length 5 has no more than 2 ones CO2- App in it. Then calculate how many such bit strings are possible?						App		
	(a)14	(b)12	(c)16		(d)]	12			
4.	Calculate how many integers between 1 to250 are divisible by 2 or 3 CO2- App						App		
	(a) 41	(b)167	(c)83	(d) 174				
5.	A subgroup of the group	$p\{1, \omega, \omega^2\}$ where a	$p^3 = 1$ under the	multipl	ication i	S		CO	5- U
	(a) $\{1, \omega\}$ (b)	$\{\omega, \omega^2\}$	(c) $\{1, \omega^2\}$		(d) N	one o	f the	e abo	ove
6.	The union of two subgroups	oup of G is a						CO	5- U
	(a) Subgroup	(b) semi group	(c) group		(d)	Mono	oid		
7.	$\int_{0}^{\infty} e^{-x} x^{4} dx$						C)4- .	App
	(a) 4	(b) 4!	(c) 5		(d)	5!			

8.	$\int_{0}^{\infty} 6e$	$e^{-x}x^5dx$				CO4- A	рр	
	(a) (5	(b) 6!	(c) 7!	(d) 5!			
9.	The region of integration of the integral $\int_{0}^{1} \int_{0}^{x} f(x, y) dx dy$ is					CO	5- U	
	(a) s	square	(b) rectangle	(c) triangle	(d) circl	(d) circle		
10.	The	value of integral \int_{1}^{2}	$\int_{1}^{4} \frac{dx dy}{xy}$			CO5	App	
	(a)	log 8	(b) $(\log 2)^2$	(c) $\log 6$ (d) None of th	ne above		
	$PART - B (5 \times 2 = 10 Marks)$							
11.	Con	npute PDNF for (F	$P \lor Q$)			CO1-	App	
12.	In how many ways can letters of the word "THUNAIEZHUTHU" be CO2- App arranged							
13.	For a Group $G = \{1, -1, -i, i\}$ under multiplication, Find order of all elements CO3- App							
14.	Con	npute y_{25} if $y =$	$\frac{1}{x}$			CO4	Арр	
15.	Solv	$\int_{0}^{1} \int_{0}^{2} x^{2} y^{2} dy dx$				CO5	App	
PART – C (5 x 16= 80Marks)								
16.	(a)	(i) Calculate PCI (ii) Using the rule $P \rightarrow (Q \rightarrow V), \neg$	NF and PDNF for es of inference de $U \lor P, Q \Rightarrow U \rightarrow Q$	$(P \land \neg Q) \lor (P \land R) \lor (Q \land R)$ rive & using CP Rule. $(V \land P)$) CO1 - CO1 -	Арр Арр	(8) (8)	
	Or							
	(D)	(1) Prove the follo $P \rightarrow (Q \land R), (Q \lor$	$(S) \rightarrow U, P \lor S \Rightarrow$	Vietnoa.	001-	Арр	(8)	
		(ii) Show that the to write programs write programs conclusion "some	e premises "one s in JAVA"and in JAVA can get e one in this class	student in this class knows "Every one who knows ho t a high- paying jop" imply ss can get high paying job	how CO1 - ow to y the	Арр	(8)	

17.	(a)	(i) Using mathematical induction show that $n^{3} + (n + 1)^{3} + (n + 2)^{3}$ is a multiple of 9	CO2 -App	(8)
		(ii) Solve $a_n - 4a_{n-1} + 4a_{n-2} = 2^n, a_0 = 1, a_1 = 1$.	CO2 -App	(8)
	(b)	Or (i) Calculate the number of positive integers not exceeding 1200 that are divisible by 2,3,5 or by 7	CO2 -App	(8)
		(ii) Using generating functions Solve $a_n = 3a_{n-1} + 5^n$, $a_0 = 4$	CO2 -App	(8)
18.	(a)	(i) Let G be a finite group of order 'n' and H be any subgroup of G. Then Show that the order of H divides the order of G. (i.e) $O(H) / O(G)$	CO3- App	(8)
		(ii) Show that $(Q^+,*)$ is ab abelian Group. Where * defined as	CO3- App	(8)
		$a*b=\frac{ab}{2}$ where $a, b\in Q^+$		
		Or		
	(b)	$S = Q \times Q$, such that binary operation defined by (a, b)*(x, y) = (ax, ay + b)	CO3- App	(16)
		 (i) Prove that (S, *) is a semi group (ii). Is it commutative and calculate the value of (2,4)*(1,5) (iii) Find the identity Element 		
		(iv) Find the inverse of $(2,3)^*(8,6)$ and $(0,2)^*(3,5)$		
19.	(a)	(i) If $y = a \cos(\log x) + b \sin(\log x)$ Show that $x^2 y_1 + x y_1 + y = 0$	CO4-App	(8)
		(ii) Compute the value of a,b,c if $\lim_{x \to 0} \frac{ae^x - be^{-x} - cx}{x - \sin x} = 4$	CO4-App	(8)
	(h)	$\frac{\pi}{2}$ dr	CO4-App	(8)
	(0)	(1) Compute $\int_{0}^{1} \frac{dx}{1 + \sqrt{\tan x}}$	COt-Whh	(0)
		(ii) Evaluate $\lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2}$	CO4-App	(8)

U3027

20. (a) (i) Find the volume of the tetrahedron bounded by CO5- App (8) 6x + 4y + z = 12, x = 0, y = 0, z = 0.(ii) Compute the area between the parabola $y^2 = x$ and $x^2 = y$ CO5- App (8) Or (b) (i) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2-y^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$ CO5- App (8)

(ii) Change the order of integration and hence evaluate CO5- App (8)

$$\mathbf{a} \quad \mathbf{a} + \sqrt{\mathbf{a}^2 - \mathbf{y}^2}$$
$$\int \qquad \int \mathbf{x} \mathbf{y} \, \mathbf{d} \, \mathbf{x} \, \mathbf{d} \, \mathbf{y}$$
$$0 \quad \mathbf{a} - \sqrt{\mathbf{a}^2 - \mathbf{y}^2}$$