/	١
Γ	1

Reg. No.:

Question Paper Code: 95C06

B.E./B.Tech. DEGREE EXAMINATION, NOV 2023

Third Semester

Computer Science and Business Systems

21UCB306 - COMPUTATIONAL STATISTICS

(Regulations 2021)

		(1	regulations 2021)			
Duration: Three hours				Maximum: 100	Marks	
		Ans	wer ALL Questions			
		PART A	$A - (10 \times 1 = 10 \text{ Marks})$			
1.	Normal distribu	tion is applied for			CO1- U	
	(a) Discrete rand	dom distribution	(b) Irregula	(b) Irregular random distribution		
	(c) Continuous 1	random distribution	(d) none of	(d) none of the above		
2.	The standard no	rmal distribution the v	value of median is		CO1- U	
	(b) 1	(c) 2	(b) 5	(c) 6		
3.	Is LDA supervis	sed or unsupervised?			CO1- U	
	(a) supervised	(b) unsupervised	(c) both (a) & (b)	(d) none of the above		
4. Is scaling required for linear discriminant analysis?					CO1- U	
(a) scaling required		(b) scaling	does not required			
	(c) all of the abo	ove	(d) none of	(d) none of the above		
5.		types of Supervised I Machine Learning.	Learning algorithms used	d for	CO1- U	
	(a) 2	(b) 3	(c) 4	(d) 5		
6.	6is an important factor in predictive modeling.				CO1- U	
	(a) Dimensional	lity Reduction	(b) feature	selection		
	(c) feature extra	ection	(d) None of	fthese		

7.	Whi	ch keywo	ord is	used for	function	on in Pyth	ion langi	uage?			C	OI- U
	(a) F	Gunction		(1	o) Def.		(c) Fun	L		(d) Define	
8.	Wha	ıt will be	the ou	utput of	the follo	owing Py	thon fur	ction?)		C	O1- U
	min((max(Fal	se,-3,-	4),2,7)								
	(a) -	4		(1	o) -3		(c) 2			(d) False	
9.	Each	n comput	er in a	cluster	is conn	ected usi	ng				C	O1- U
	(a) U	JTP		(1	o) Rj-45	;	(c) STF)	(d) Co	paxial cable	
10.	How	many b	ackgro	ound pro	ocess ru	ns behind	d balance	ed clus	ster?		C	O1- U
	(a) 1			(1	o) 2		(c) 3			(d) all o	of the above	
					PA	RT – B (:	$5 \times 2 = 10$	0 Marl	xs)			
11.	Wha	it is the f	ormul	a for mu	ıltivaria	te regress	sion?				CO1-	U
12.	Diff	erence be	etweer	regress	sion ana	lysis and	discrim	inant a	nalysi	S.	CO1-	U
13.	How	do you	solve	principa	l compo	onent ana	lysis?				CO3-	Ana
14.	Wha	it is tuple	? Giv	e examp	ole.						CO1-	U
15.	List	the appli	cation	s of Clu	stering						CO1-	U
					P	ART – C	(5 x 16=	= 80 N	(larks			
16.	(a)	Calcula	te the	Karl Pea	arson co	rrelation	coeffici	ent(r)	ı		CO2- App	(16)
		X	10	6	9	10	12	13	11	9		
		Y	9	4	6	9 Or	11	13	8	4		
								(16)				
		&differ	ence ii	n Plot.U	sing AN	NOVA tw	o way c	lassifi	cation			
		Plots		A (Whe			C					
		P1		6	5		5					
		P2		7	5		4					
		P3		3	3		3					
		P4		8	7		4					
17.	(a)	Which	steps	to anal	yze Lir	near Disc	criminan	t Ana	lysis?	What are	CO2- App	(16)
		applicat	ions o	f LOA?	Explain	briefly.						
	<i>a</i> >	m 1		ъ.		Or					G02 +	(1.0)
	(b)					function	•				CO2- App	(16)
			,	, , ,		4),(2,3),(3 ,8),(9,5),						
		C2-/ \\2	(11)	,2 x 2)={(,,10),(0	,07,(2,2),	(0,7),(10	,,0)}				

18.	(a)	How do you analyze the Principal component Analysis?	CO1- U	(16)
		Or		
	(b)	How do you conduct Confirmatory factor analysis?	CO1- U	(16)
10			G01 II	(1.6)
19.	(a)	Briefly explain about Data visualization in python.	CO1- U	(16)
		Or		
	(b)	How to Read from a file? Give some example.	CO1- U	(16)
			~~	
20.	(a)	What are the different types of clustering?	CO1- U	(16)
		Or		
	(b)	Explain in detail about overlapping clustering?	CO1- U	(16)