A	Re	g. No.		
		Question Paper	Code: U2M09	
	B.E./	B.Tech. DEGREE EX	AMINATION, NOV	v 2023
		Second S	Semester	
		Computer Science ar	d Business Systems	
		21UMA209- Sta	tistical Methods	
		(Regulation	ons 2021)	
Dura	tion: Three hours			Maximum: 100 Marks
		Answer ALI	L Questions	
		PART A - (10 x	1 = 10 Marks)	
1.	ANOVA is a statistical populations	method of comparing	the of sev	veral CO6-U
	(a) Variance (b) St	andard deviations	(c) Means	(d)All of the above
2.	What must we include	when reporting an AN	OVA?	CO6-U
	(a) Standard deviations		(b) Means	
	(c) Degrees of freedom	L	(d) All of these	
3.	Estimate and estimator	are:		CO6-U
	(a) Same	(b)Different	(c)Maximum	(d) Minimum
4.	Estimate is the observe	d value of an:		CO6-U
	(a) Unbiased estimator	(b)Estimator	(c)Estimation	(d) Interval estimation
5.	The standard error of the	the proportion $p = 0.5$ a	nd $n = 15$.	CO3- App
	(a) 0.234	(b) - 0.234	(c) 0.129	(d) - 0.129
6.	Which of the following	; test must be two – sid	led?	CO6- U
	(a) Sign test (b) Wild	coxon signed rank test	(c) Kruskal – Wal	lis test (d) Runs test
7.	Secular trend can be m	easured by		CO6-U
	(a) Two methods	(b)Three methods	(c)Four methods	(d) Five methods

8.	8. A complete cycle passes through: C								
	(a) Two stages	(d) Difficult to tell							
9.	An R file has an exter	CO6-U							
	(a) .S	(b) .RP	(c) .R	(d) .SP					
10.	In R programming, th	ne very basic data types	are the R-objects called?	CO6-U					
	(a) Lists	(b) Matrices	(c)Vectors	(d) Arrays					
	PART - B (5 x 2 = 10 Marks)								
11	1 What do you understand by Design of Experiments? CO6-U								
12	Explain: Fisher – Neyr	nann Criterion.		CO6-U					
13	.3 Define: rank sum test. CO								
14	4 State the different methods of measuring trend. CO4								
15	5 What is the function used for adding datasets in R?								
	PART – C (5 x 16= 80Marks)								
16	(a) Analyze the follow	wing data using 2-way	ANOVA classification:	CO1-Ana (16)					

	Treatment 1				
Treatment 2	1	2	3		
1	30	26	38		
2	24	29	28		
3	33	24	35		
4	36	31	30		
5	27	35	33		
	Or				

(b) A company appoints 4 salesmen A, B, C and D and observes their sales CO1-Ana (16) in 3 seasons, summer, winter and monsoon. The figures are given in the following table:

	Salesmen			
Season	1	2	3	4
Summer	45	40	28	37
Winter	43	41	45	38
Monsoon	39	39	43	41

Carry out an Analysis of variances.

.

- 17 (a) A random sample X_1 , X_2 and X_3 of size 3 from a population with mean μ CO2-App (16) . and variance σ^2 . T_1 , T_2 , T_3 are the estimators used to estimate mean μ , where
 - $T_1 = X_1 + X_2 X_3, T_2 = 2X_1 + 3X_3 4X_2 \& T_3 = \frac{1}{3}(\lambda X_1 + X_2 + X_3)$
 - (a) Are T_1 and T_2 unbiased estimators?
 - (b) Find the value of λ such that T₃ is unbiased estimator for μ .
 - (c) With this value of λ is T₃ a consistent estimator?

Which is the best estimator?

Or

- (b) In random sampling from normal population $N(\mu, \sigma^2)$, find the CO2 -App (16) maximum likelihood estimators for
 - (i) μ when σ^2 is known
 - (ii) σ^2 when μ is known and
 - (iii) The simultaneous estimation of μ and σ^2 .
- 18 (a) An investment analyst wants to test whether difference exists between CO3-App (16)
 . the returns on two mutual funds. Paired data of annualized rates of return for the two mutual funds during 15 randomly chosen months are as follows:

Fund	1	1	1	1	1	0	1	1	1	1	(9	1	1	1
А	2	1	4	0	2	8	6	3	2	0	0	9	6	3	0
Fund	1	1	1	9	1	0	1	1	1	1	1	1	1	1	1
В	4	5	6	9	0	8	8	2	7	3	0	2	5	9	4

Conduct the sign test for determining whether returns on the two mutual funds are equal.

Or

(b) The following are the year of experience (X) and the average customer CO3-App (16) satisfaction (Y) for 10 service providers. Is there a significant rank correlation between 2 measures? Use 5% level of significance.

v	6.	5.	6.	6.	3.	1.	9.	4.	7.	2.
Λ	3	8	1	9	4	8	9. 4	7	2	4
v	5.	8.	4.	4.	4.	6.	5.	6.	6.	5.
r	3	6	7	2	9	1	5. 1	3	8	2

19 (a) Compute the second degree polynomial equation for the following data: CO4-App (16)

Year	1993	1994	1995	1996	1997	1998
Price	100	107	128	140	181	192
	0.1		11. 0		1000	

Estimate the price of the commodity for the year 1999.

Or

(b) Compute the average seasonal movement for the following series: CO4-App (16)

Year	Ι	II	III	IV
199	32	34	34	34
3	1	8	8	8
199	32	35	35	34
4	7	1	4	8
199	34	35	38	34
5	2	9	1	5
199	36	39	40	38
6	4	0	1	5

20 (a) (i) Write a R program to take input from the user (name and age) and CO5-App (8)
display the values. Also print the version of R installation.
(ii) Write a R program to create a two-dimensional 5×3 array of CO5-App (8) sequence of even integers greater than 50.

Or

(b) Write a R program to create an array of two 3x3 matrices each with 3 CO5-App (16) rows and 3 columns from two given two vectors. Print the second row of the second matrix of the array and the element in the 3rd row and 3rd column of the 1st matrix.