A		Reg. No. :										
	Question Paper Code: 94C05											
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023												
		Fourth	Semester	r								
		Computer Science	and Busin	ness S	Syste	ems						
19UCB405 - Formal Languages And Automata Theory												
(Regulations 2019)												
Dura	ation: Three hours						Μ	axim	um:	100	Mar	ks
Answer ALL Questions												
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$												
1.	There are	_tuples in finite state r	nachine.								CO	1 - U
	(a) 4 (b) 5 (c) 6 (d)unlim						nited	ļ				
2.	Which of the Language: {0,01}	following does not	represen	ts th	ne g	give	n la	ingua	age?	C	202-	App
	(a) $0+01$ (b) $\{0\} \cup \{01\}$ (c) $\{0\} \cup \{0\} \{1\}$ (d) $\{0\} \land \{01\}$											
3.	The Grammar can be defined as: $G=(V, \sum, p, S)$ In the given CO1-U definition, what does S represents?								1 - U			
	(a) Accepting State (b) Starting Variable (c) Sensitive Grammar (d) None of these											
4.	Which among the tuple?	following is not a par	t of the (Conte	xt fr	ee g	ramı	nar		C	202-	App
	(a) End symbol	(b) Start symbol	(c) v	Variat	ole			(d)	Prod	lucti	on	
5.	Which of the opera	tions are eligible in PD	A?							C	CO2-	App
	(a) Push	(b) Delete	(c) Inse	ert			((d) A	dd			
6.	which of the foll context to PDA?	owing correctly reco	gnize the	sym	nbol	' - '	in			C	202-	App
	(a) Moves	(b) transition function	(c) or/r	ot sy	mbo	1 (d) no	one o	f the	men	ntion	ed
7. The value of n if turing machine is defined using n-tuples								CO1- U				
	(a) 6	(b) 7 (c)	8		(d)	5						

8.	If T1 and T2 are two turing machines. The composite can be represented using the expression:							CO1- U		
	(a) T	1T2	(b) T1 U	J T2		(c) T1	X T2	(d) None	of the mentio	ned
9.	Whie	ch of the probl	ems are uns	solvat	ole?					CO1- U
	(a) H	lalting problen	n							
	(b) Boolean Satisfiability problem									
	(c) Halting problem & Boolean Satisfiability problem									
	(d) None of the mentioned									
10.	If a problem has an algorithm to answer it, we call it C							CO1 - U		
	(a) d	ecidable	(b) solve	ed	(c) reco	ognizable	(d) n	one of the me	ntioned
			Р	ART	– B (5	x 2= 1	10 Marks)			
11.	Define Finite Automata and Transition diagram.									CO1- U
12.	Define CNF with an example								CO1 - U	
13.	Define the instantaneous description of PDA								CO1- U	
14.	Define Turing Machine							CO1- U		
15.	Define Rice Theorem							CO1- U		
				PAR	T – C	(5 x 16	6= 80 Mark	as)		
16.	(a)	Construct the (a+b)* at	e Epsilon N ob and ((FA fo)+1)*	r the F (00+1 Or	Regula 1)(0+1	r Expressio)*	'n	CO2- App	(16)
	(b) Construct DFA for NFA-Epsilon given below CO2- App							(16)		
			(2)	a	b	C	Epsilon			
			(Start) p	$\{\mathbf{p}\}$	$\{q\}$	{r}	ϕ			
			(Final)r	$\{\mathbf{r}\}$	φ	Ψ {p}	<u>{q}</u>			
17.	(a)	Construct the	e leftmost a	and Ri	ght m	ost der	ivation and	l draw the	CO2- App	(16)
		parse tree fo	r 00101 an	d 100	1					

Given the productions are $S\to\!A1B~$, $A\to\!0A/~\epsilon~$, $B\!\!-\!\!>\!\!0B/$ 1B / ϵ and Explain the Types of Grammar .

2

	(b)	(i) Convert the following Grammar in to GNF S->AB A->BS / b	CO2- App	(12)
		B->SA / a (ii) Find CNF for the following Grammar S->aAbB A->aA /a B->bB / b	CO2- App	(4)
18.	(a)	(i) Construct PDA equivalent for the following grammar given below $E \rightarrow E + E / E^*E / a$	CO2- App	(8)
		(ii) Show that the language $L=\{a^nb^nc^n d^n/n \ge 0\}$ is not a Context Free Language	CO2- App	(8)
	(b)	Or (i) Construct PDA equivalent for the following grammar given below	CO2- App	(8)
		S-> aAA A->aS / bS /a (ii) Construct PDA to accept the Language $L=\{WCW^R / W=\{0,1\}^*\}$	CO2- App	(8)
19.	(a)	Explain Programming Techniques for Turing Machine Construction in Detail.	CO1- U	(16)
	(b)	Explain Multi head and Multi tape Turing machine in detail.	CO1- U	(16)
20.	(a)	Explain Universal Turing Machine in detail. Or	CO1- U	(16)
	(b)	Explain applications of Finite Automata in detail.	CO1- U	(16)