A		Reg. No. :												
Question Paper Code: U5C02														
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023														
Fifth Semester														
Computer Science and Business Systems														
21UCB502- COMPILER DESIGN														
(Regulations 2021)														
Duration: Three hours Maximum: 100 Mar								Лark	S					
Answer ALL Questions														
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$														
1.	. Arrange the give compilation in the correct order										CO	1 - U		
(a) Linking														
	(b) Assembling													
	(c) Compiling													
	(d) Pre-Processing													
	(a) D-C-B-A	(b) A-C-B-D		(0	:)D-0	C-A-	В			(d) A	-B-C	C-D	
2.	Tokens are specified by							CO	1 - U					
	(a) Regular expressions			(b) Algebraic expressions										
	(c) Arithmetic expressions			(d) Boolean expressions										
3.	A grammar that produces more than one parse tree for some sentence is CO1-U called as						-U							
	(a) Ambiguous	(b) Unambigu	ous	(0	c) Re	gula	r.			((d) n	one		
4.	The grammar $s \rightarrow L=$	grammar s \rightarrow L=R leads to the presentation of										CO	1 - U	
	(a) Arithmetic expression				(b) Left to right expression									
	(c) Shift from left to r	((d) An assignment statement											

5.	Consider the grammar with the following translation rules and E as the CC start symbol.								
	E->E1#T{E.value=E1.value*T.value} E->T{E.value=T.value} T->T1&F{T.value=T1.value+F.value} T->F{T.value=F.value} F ->num {F.value = num.value}								
	Compute E.value for the root of the parse tree for the expression:2 # 3 & 5 # 6 & 4.								
	(a) 200	(b) 180	(c) 160		(d) 40				
6.	Syntax Directed Tran	ax Directed Translation is							
	(a) Production with S	(b) Production	tems						
	(c) Production with L	(d) Production							
7.	In Algebraic expres replaced by?	sion simplification, a	= a + 1 ca	n simply be	CO1-U				
	(a) a	(b) INC a	(c) DEC a		(d) MUL a				
8.	Code generator uses function to determine the status ofCO1-Uavailable registers and the location of name values.								
	(a) setReg	(b)cinReg	(c) pfReg		(d) getReg				
9.	The technique of replacing run time computations during compile time CO1-U is called								
	(a) Constant folding	(b) code host							
	(c) peephole optimiza	(d) invariant							
10.	After the code optimi	CO1-U							
	(a) x=x	(b) x=0	(c) x=x+0	(d) removed free	om the code				
	PART – B (5 x 2= 10Marks)								
11.	Define Compiler and	CO1-U							

11. Define Compiler and types of compilers

12. Consider the following grammar

 $E \rightarrow E+T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$ obtain Left Recursion for the given grammar.

- 13. What is the intermediate representation of the statement A or B and not C CO2-App
- 14. What is register descriptor and address descriptor? CO1-U
- 15. Draw the DAG for the following basic block

a=b+cb=a-dc=b+c

 $\mathbf{d} = \mathbf{a} - \mathbf{d}$

 $PART - C (5 \times 16 = 80 Marks)$

16. (a) Illustrate how the following high level language statement is CO2-App (16) transformed into machine code during the compilation process a = (b+c) * (b+c) *2 with the neat sketch of phases of compiler. Or

(b) Derive DFA for the given regular expression $(a|b)^*abb$. CO2-App (16)

17. (a) Check the following grammar is SLR(1) or not. CO2-App (16) S->L=R|R L->*R | id R->L

Or

(b) Check whether the following grammar is LL (1) or not. CO2-App (16) $S \rightarrow L = R | R$ $L \rightarrow * R | id$ $R \rightarrow L$

CO2-App

CO2-App

18. (a) (i) Translate the statement

```
CO2-App
                                                                                     (8)
       c=0
       do{
          if (a>b) then
                x++
          else
                x - -
                c + +
 \} while(c < 5) 
(ii) Translate the statement
                                                                     CO2-App
                                                                                     (8)
switch (ch)
Case 1:
     C=a+b;
     Break;
Case 2:
     C=a-b:
     Break;
}
                                Or
```

- (b) (i) Draw the quadruple, triple and indirect triples for the foll CO2-App (8) statement a = (b*c) + (a+b+c). (ii) Draw the quadruple, triple and indirect triples for the foll CO2-App (8) statement (a + b) * (c + d) - (a + b + c)
- 19. (a) For the statement $x = a / (b + c) d^*(e + f)$, generate three address CO2-App (16)code and subsequent target code using the simple code generation algorithm

Or

- (b) For the statement x = (a + b) ((c + d) e) generate three address CO2-App (16)code and subsequent target code using the simple code generation algorithm
- 20. (a) Explain the principal sources of optimization in detail. CO1-U (16)

Or

(b) What do you mean by data flow analysis? How is it useful for CO1-U (16)optimization purposes? Explain how the data flow equations for the reaching definition is derived.