Question Paper Code: U5C01

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023

Fifth Semester

Computer Science and Business Systems

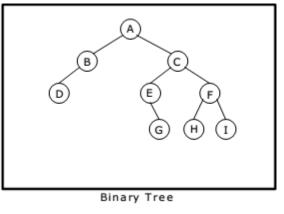
21UCB501-DESIGN AND ANALYSIS OF ALGORITHM

(Regulations 2021)

Duration: Three hours

Maximum: 100 Marks

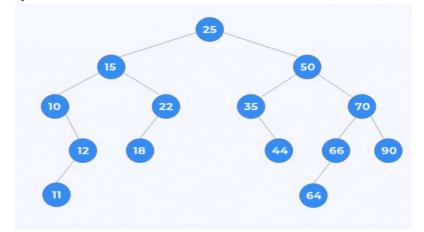
CO1-U

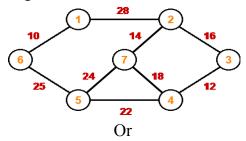

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

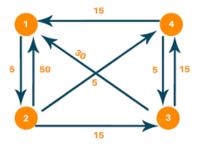
- 1. What is an algorithm?
 - (a) Flowchart (b) Pseudo code
 - (c) Decision (d) Step by step instructions used to solve the problem
- 2. What is the best-case time complexity of finding a specific element in CO1-U an unsorted array using linear search?
 - (a) O(n) (b) O(1) (c) $O(\log n)$ (d) $O(n^2)$
- 3. Topological sorting is applicable to which type of graphs? CO1-U
 - (a) Searching for an element in a linked list.
 - (b) Searching for an element in an unsorted array.
 - (c) Searching for an element in a sorted array.
 - (d) Searching for an element in a balanced binary search tree.
- 4. What is the main advantage of using binary search over linear search? CO1-U
 - (a) Binary search works faster for small arrays.
 - (b) Binary search can handle unsorted arrays.
 - (c) Binary search has a lower time complexity for large datasets.
 - (d) Binary search requires less memory.
- 5. Which of the following algorithms is an example of a greedy CO1-U algorithm?
 - (a) Kruskal's algorithm (b) Searching (c) Dynamic Programming (d) Quick Sort

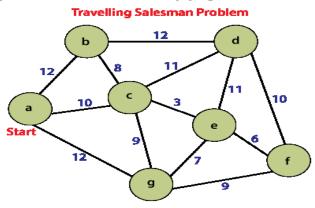
6.	Which of the following is a dynamic programming problem?		CO1-U
	(a) Longest Common Subsequence	(b) Binary Search	
	(c) Depth First Search	(d) None of the above	
7.	Which of the problems cannot be solved by backtracking method? CO1-U		
	(a) n-queen problem	(b) subset sum problem	
	(c) hamiltonian circuit problem	(d) travelling salesman pro	blem
8.	Which of the following methods can be used to solve the Knapsack CO1-U problem?		CO1-U
	(a) Brute force algorithm (b) Recursion		
	(c) Dynamic programming (d) Brute force, Recursion and Dynamic Programming		
9.	Which of the following problems is not NP complete?		CO1-U
	(a) Hamiltonian circuit	(b) Bin packing	
	(c) Partition problem	(d) Halting problem	
10.	The choice of polynomial class has led to the development of an CO1-U extensive theory called		CO1-U
	(a) computational complexity	(b) time complexity	
	(c) problem complexity	(d) decision complexity	
PART - B (5 x 2 = 10 Marks)			
11.	Give the Euclid's Algorithm for computing GCD(44,17)?		CO2-App
12.	14,33,26,11,8.Sort the given elements using Merge Sort Algorithm		CO2-App
13.	Find an optimal Huffman Code for the following set of frequencies:		CO3-Ana
	a: 50 b: 25 c: 15		
14.	List the procedure used in recursive backtracking algorithm.		CO1-U
15.	Write the difference between Determin with an example.	istic & Non Deterministic algorith	ims CO1-U
PART – C (5 x 16= 80Marks)			
16.	(a) Solve Recurrence Relation a) $T(n) = 2T(n/2) + n/\log^2 n$ b) $T(n) = 8T(n/2) + n^3$ c) $T(n) = 4T(n/2) + n$ d) $T(n) = 8T(n/2) + n$ On	r	CO2-App (16)


- (b) Calculate the GCD (14828, 24486) by applying Euclid's CO2-App (16) algorithm, Consecutive Integers Checking and Middle School Method.
- 17. (a) Consider the following binary search tree and perform Preorder, CO2-App (16) Postorder,Inoder traversal.


Or

(b) (i) Explain Post Order ,Inorder and Pre order for the Binary Tree CO2-App (16) Traversal


(ii) Perform Post Order ,Inorder and Pre order for the given Binary Tree Traversal


18. (a) Construct the minimum spanning tree (MST) for the given graph CO2-App (16) using Kruskal's Algorithm-

(b) Using Floyd Warshall Algorithm, find the shortest path distance CO2-App (16) between every pair of vertices

19. (a) Apply the branch-and-bound algorithm to solve the travelling CO2-App (16) sales man problem for the following graph.

- (b) Consider knapsack problem: n = 8. (W1, W2, W3, W4, W5, W6, CO2-App (16) W2, W8) = (1, 11, 21, 23, 33, 43, 45, 55), P = (11, 21, 31, 33, 43, 53, 55, 65), m = 110. Solve the problem using backtracking approach.
- 20. (a) Differentiate NP hard and NP complete problems with its CO1-U (16) algorithm analysis

Or

(b) Describe in detail about the steps involved in the Vertex Cover CO1-U (16) Algorithm with an example