A		Reg. No. :									
Question Paper Code: U1P03											
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023											
First Semester											
Civil Engineering											
21UPH103- ENGINEERING PHYSICS											
(Common to ALL branches)											
(Regulation 2021)											
Dur	ation: Three hours						Max	imun	n: 10	0 Ma	arks
		Answer	ALL que	stions	5						
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$											
1.	The coordination n	umber for FCC lattice i	S							CO	1 - R
	(a) 12	(b) 6	(c) 8				((d) 24	4		
2.	2. The number of atoms per unit cell for a simple cubic crystal structure is						CO	1 - R			
	(a) 4	(b) 1	(c) 2				((d) 6			
3.	Atomic packing factor for BCC crystal lattice is						CO	1 - R			
	(a) 32%	(b) 52%	(c) 74	%			((d) 6	8%		
4.	If N_1 and N_2 are the number of atoms in ground state and excited state CO2- R respectively, then in population inversion						2- R				
	(a) $N_1 < N_2$	(b) $N_1 > N_2$	(c) N	1 = 1	N_2		((d) N	$ _1 > 2$	$2N_2$	
5.	A hologram contain	ns the information abou	t							CO	2- R
(a) Amplitude of the object (b) Ph			nase o	of the ob	oject						
	(c) Both amplitude and phase of the object (d) None of these										
6.		ength corresponding to re, then according to W			0.		is the	e		CO	3- R
	(a) $\lambda_m T = \text{constant}$	(b) $\lambda_m / T = \text{constant}$	(c) λ_m	$T^{\frac{1}{2}} =$	constan	nt (e	d) λ _m	/ T	$\frac{1}{2} = 0$	const	ant

7.	-	nck's hypothesis, th r is not continuous bu	-		CO3- R		
	(a) 1/ hv	(b) h/v	(c) v/h	(d) hv			
8.	1	g mass m is moving ted with the matter wa	•	deBroglie	CO3- R		
	(a) $\lambda = h/mv$	(b) $\lambda = h/mv^2$	(c) $\lambda = h^2/mv$	(d) $\lambda = 1$	mv/h		
9.	The modulus of ela	sticity is			CO4- R		
	(a) Stress × Strain	(b) Stress / Strain	(c) Strain / Stress	(d) Stress× Young	's modulus		
10.	The ratio of lateral	strain to linear strain i	S		CO4- R		
	(a) Elastic limit	(b) Young's modulus	(c) Rigidity mod	lulus (d) Pois	sson's ratio		
PART - B (5 x 2= 10 Marks)							
11.	Calculate the Miller Indices of a plane which cuts the intercepts of 2, 3, 4 CO1- App units along x, y and z axes respectively.						
12.	Define unit cell.			(CO1- R		
13.	What is holography	7?		(CO2- R		
14.	Mention any two pl	hysical significance of	f the wave function ψ	·. C	CO3- R		
15.	State Hooke's law.			(CO4- R		
PART – C (5 x 16= 80 Marks)							

16. (a) What are miller indices? Sketch two successive (110) planes. CO5- App (16) Show that for a cubic lattice the distance between two successive plane (h k l) is given by

$$d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Or

- (b) Explain with necessary diagram point defects and line defects that CO1-U (16) occur in crystals.
- 17. (a) Explain the modes of vibrations of CO_2 molecule. Describe the CO2-U (16) construction and working of CO_2 laser with necessary diagrams.

Or

(b) Describe the construction and working of CO_2 laser. CO2-U (16)

18.	(a)	(i) Show that the atomic packing factor for FCC is 74%.	CO1- U	(8)
		(ii) Derive Schrodinger's time independent wave equation.	CO3- U	(8)
		Or		
	(b)	(i) Explain surface defects in crystals.	CO1- U	(8)
		(ii) Derive Schrodinger's time dependent wave equation.	CO3- U	(8)
19.	(a)	Explain three moduli of elasticity with suitable diagram. Or	CO3- U	(16)
	(b)	Solve Schrodinger's wave equation for a particle lying in a one dimensional box of length 'a'.	CO3- U	(16)
20.	(a)	A patient's leg was put into traction, stretching the femur from a length of 0.46 m to 0.461 m. The femur has a diameter of 3.05 cm. With the knowledge that bone has a Young's modulus of $\sim 1.6 \times 10^{10}$ in tension, what force was used to stretch the femur? Or	CO6- Ana	(16)
	(b)	A circular and square cantilever is made of same material and has equal area of cross-section and length. Analyzethe ratio of their	CO6- Ana	(16)

equal area of cross-section and length. Analyzethe ratio of their depression for a given load.

U1P03