•
Δ
$\overline{}$

ground water?

(c) Flame photometry

(a) Atomic Absorption spectrometry

Reg. No. :					

Question Paper Code: 51005

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023

First Semester

Computer Science and Engineering

15UCY105 - APPLIED CHEMISTRY

(Common to EEE, ECE, EIE, IT and Biomedical Engineering)

		(Regulatio	n 2015)			
Dur	ation: Three hours			Maximum: 100 Marks		
		Answer ALL	Questions			
		PART A - (10 x	1 = 10 Marks)			
1.	The number of type carbide is	s of bonds between two	carbon atoms in calcium	m CO1- R		
	(a)Two sigma, two Pi	(b)One sigma, two Pi	(c) One sigma, one Pi	(d) Two sigma, one Pi		
2.	The bond order in oxy	gen is		CO1- R		
	(a) 1	(b) 2	(c) 3	(d) 4		
3.	3. Difficult to monitor and very dangerous form of corrosion C					
	(a) Galvanic	(b) Pitting	(c) Crevice	(d) Stress		
4.	Using the data given b	pelow find out the stronges	st reducing agent.	CO2- R		
	$E^{-}Cr_{2}O_{7}^{2-}/Cr^{3+} = 1.33^{\circ}$ $/Mn^{2+} = 1.51V$.	$V, E^{-}Cr^{3+}/Cr = -0.74V, E^{-}$	$Cl_2/Cl^2 = 1.36V$, E^2MnO_4	•		
	(a) Cl ⁻	(b) Cr	(c) Cr ³⁺	$(d) Mn^{2+}$		
5.	Primary batteries are	examples of		CO3- R		
	(a) Reversible cells	(b) Fuel cells	(c) Sensors	(d) Irreversible cells		
6.	Which is the best ar	nd simple method to det	ermination of fluorine in	CO3- R		

(b) Spectrophotometer

(d) Ion-selective electrode

7.	Abs	orption of a molec	cule shifted towards l	onger wavelength is		CO4- R
	(a) I	Blue shift	(b) Red shift	(c) Green shift	(d) Yellow s	hift
8.	Whi	ich of the followin	g transitions is the hi	ghest energy transition?		CO4- R
	(a) r	n to σ^*	(b) n to π^*	(c) σ to σ^*	(d) π to π^*	
9.	The	graph obtained or	plotting weight and	temperature corresponds to		CO5- R
	(a) I	OTA	(b) TGA	(c) Flame photometry	(d) DSC	
10.	The	fibre which is ma	de from acrylonitrile	as monomer		CO5- R
	(a) I	Rayon	(b) Acrylic fibre	(c) Nylon	(d) PVC	
			PART – B	$(5 \times 2 = 10 \text{ Marks})$		
11.	State	e Pauli Exclusion	principle			CO1- R
12.		* * *	corrosion in the fol andle (ii) Welded sta	lowing and explain the mechaninless steel parts	ism (i) Iron	CO2- R
13.	Differentiate primary cells and secondary cells					
14.	=16	•	weight concentration	CH ₂ =CH-CHO absorbs at 217 in (g/ml) required to observe an	`	CO4- R
15.	Give	e the synthesis an	d uses of Nylon 66			CO5- R
			PART –	C (5 x 16= 80 Marks)		
16.	(a)	` '	ecular shape and pred 3) ₂ C=O molecules	dict the bond angles for PF ₃ ,	CO1- App	(8)
		• •	t the intra and inter n e properties of liquids Or	nolecular hydrogen bonding and s.	CO1- App	(8)
	(b)	Explain the con molecule using N	_	a Homo and hetero diatomic	CO1- App	(16)
17.	(a)	(i) Explain the recorrosion with su		omoter as well as an inhibitor of	CO2- App	(8)
		(ii) Differentiate nickel with their	•	ting and electroless plating of	CO2- App	(8)
	(b)			orrosion by modifying the metal	CO2- Ana	(16)

18.	(a)	(i) Describe the construction of Ni-Cd battery with relevant reactions occurring during discharge. Mention its applications	CO3- Ana	(8)
		(ii) Elaborate in detail about glucose biosensors Or	CO3- Ana	(8)
	(b)	Construct and explain the working principle of an electrochemical biosensor and glucose biosensor. Give the merits and demerits of both sensors.	CO3- Ana	(16)
19.	(a)	Discuss the importance and principles of Green chemistry Or	CO4- U	(16)
	(b)	(i) Explain with a schematic diagram the working of Differential Scanning Calorimetry (DSC). List the merits of DSC.	CO4- Ana	(8)
		(ii) Discuss with a neat diagram, the principle and construction of Thermogravimetry apparatus.	CO4- Ana	(8)
20.	(a)	(i) Explain about the tacticity of polymers	CO5- U	(8)
		(ii) Explain the various forms of conducting poly aniline with structure and write about their conducting mechanism Or	CO5- U	(8)
	(b)	What are liquid crystals? Discuss the applications of liquid crystals in the field of electronics.	CO5- U	(16)