\mathbf{A}

Reg. No.:

|--|

Question Paper Code: U4M23

B.E./B.Tech. DEGREE EXAMINATION, APRIL 2023

Fourth Semester

Civil Engineering

21UMA423 - Numerical Methods

(Regulations 2021)

Dura	ation: Three hours	0 Marks							
Answer ALL Questions									
		PART A - (10 x	1 = 10 Marks)						
1.	Order of convergence		CO1-U						
	(a) 4	(b) 1	(c) 2	(d) 3					
2.	When Gauss Eliminate transferred in a		CO1- U						
	(a) lower triangular	(b) upper triangular	(c) square	(d) zero					
3.	In Cubic Spline, M ₀ =N	$M_{\rm n}$ =			CO2- U				
	(a) 1	(d) 0							
4.	In Cubic Spline, M ₀ =N		CO2- U						
	(a) 1	(d) 0							
5.	Trapezoidal rule is so the sum oftra		CO3- U						
	(a) n (b)n+1 (c)n-1		(d) 2n						
6.	Gaussian three point of degree		CO3- U						
	(a) 1	(b)2	(c)3	(d) 5					
7.	Predictor-Corrector m		CO4- U						
	(a) self	(a) self (b)not self (c)identity							

8.	met]	prior values a	are r	equire	ed to j	CO4- U						
	(a) 1	1	(b	(b)2				c)3	(d) 4			
9.	PDF	E of second order	, if E	² -4A(C=0 t	then				CO6- U		
	(a) p	parabolic	(b)ellipt	ic		(0	c)hyperbolic	(d) N	these		
10.	u _{xx} +	-u _{yy} =0 is a		equat	tion				CO5- U			
	(a) I	Laplace	(b)Poiss	on		(0	c)heat	(d) w	(d) wave		
	I		 	PA	ART –	B (5 x	2=	10Marks)	1			
11.	Con	npare Gauss Elim	ninati	on an	d Gau	ss Jorda	an]	Methods		CO1- U		
12.	Fori	m the divided dif	feren	ce tab	le for	the foll	low	ving data		CO2-	App	
		-				,						
			X	2	5	10						
			У	5	29	109						
13.	Using two –point Gaussian quadrature formula find $\int_{-1}^{1} \frac{1}{1+x^2} dx$									CO3- App		
14.	Using Euler's method find y(0.1) given $\frac{dy}{dx} = 1 + y^2$, y(0) =0									CO4- App		
15.	Classify $u_{xx} - 2u_{xy} + u_{yy} = 0$								CO6- U			
	PART – C (5 x 16= 80Marks)											
16.								CO1-	O1-App (8)			
		(ii) Solve x + 2 Gauss Eliminati	x + 2y + z = 8, $2x + 3y + 4z = 20$, $4x + y + 2z = 12$ using C						CO1-App		(8)	
	Or											
	(b) (i) Using Power method find numerically largest Eigen value and the corresponding Eigen vector of the matrix $\begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$						CO1 -	-App	(8)			
	· · · ·							CO1-App		(8)		

		using Gauss Seidel method										
17.	(a)	Using Lagrange's interpolation formula calculate f(10) for the following data							CO2-App	(8)		
			X	<u> </u>	5	6	9		11			
			Y	7	12	13	14	1	16			
		_	(ii) Using Newton's divided difference formula calculate f(3) satisfying the following data:								CO2- App	(8)
			X	0	1	2	5					
			у	2	3	12	147					
					Oı	1	<u> </u>					
	(b) (i) Using Newton's backward interpolation formula calculate f(4) from the following data :								e f(4)	CO2- App	(8)	
					x 0 1 2 3							
					у	1	2	1	10			
	(ii) Using cubic spline function calculate f(1.5) for the following data						owing	CO2- App	(8)			
		X	1		2	3						
		у	-8		-1	1	8					
18.	(a)	(i) Compute th	ne first	and s	second	l deriv	atives	of y a	$\mathbf{at} \ \mathbf{x} = 1$	from	CO3- App	(8)
		X	1		2	3	4					
		У	1		8	27	64					
			'	'		•	'					

		(ii) Evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$ with 6 equal intervals by	CO3- App	(8)
		(a) Trapezoidal rule		
		(b) Simpson's $\frac{1}{3}$ rule.		
		Or		
	(b)	(i) Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ using Romberg's method correct to 4	CO3- App	(8)
		decimal places.		
		(ii) Evaluate $\int_{0}^{1} \int_{0}^{1} e^{(x+y)} dxdy$ using Trapezoidal rule by taking	CO3- App	(8)
		h=k=0.5		
19.	(a)	(i) Using Taylor's series method find $y(1.1)$ given $y' = x + y$ with $y(1) = 0$	CO4- App	(8)
		(ii) Given $\frac{dy}{dx} = 1 + y^2$, $y(0) = 0$, $y(0.2) = 0.2027$, $y(0.4) = 0.4228$,	CO4- App	(8)
		y(0.6) = 0.684 evaluate $y(0.8)$ by Milne's Method		
		Or		
	(b)	(i) Using R-K method of fourth order, find $y(0.1)$ for the initial	CO4- App	(8)
		value problem $\frac{dy}{dx} = x + y^2$ with $y(0) = 1$		
		(ii) Using Adam's Bash forth Predictor-Corrector method, find	CO4- App	(8)
		y(4.4) given that $5xy' + y^2 = 2$, $y(4) = 1$, $y(4.1) = 1.0049$, $y(4.2) = 1.0097$ and $y(4.3) = 1.0143$		
20.	(a)	(i) Solve $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$, $u(0,t) = 0$, $u(4,t) = 0$, $u(x,0) = x(4-x)$.	CO5- App	(8)
		Take $h = 1$ and find the values of u up to $t = 5$ using Bender-		

	Schmidt's difference equation		
	(ii) Using Crank-Nicholson's difference equation to solve	CO5- App	(8)
	$\frac{\partial^2 u}{\partial x^2} = 16 \frac{\partial u}{\partial t}$		
	u(0,t) = 0, $u(1,t) = 100t$, $u(x,0) = 0$ compute u for one time step		
	function with h=0.25		
	Or		
(b)	Solve $\nabla^2 \mathbf{u} = -10(\mathbf{x}^2 + \mathbf{y}^2 + 10)$ over the square mesh with sides	CO5- App	(16)
	x = 0, x = 3, y = 0, y = 3 with u=0 on the boundary and mesh length 1		
	unit.		