Reg. No.:					

Question Paper Code: 96901

B.E./B.Tech. DEGREE EXAMINATION, NOV 2023

Sixth Semester

Chemical Engineering

	19UCH60)1 – CHEMICAL F	REACT	ION EN	GINEERIN	G II	
		(Regula	tions 20	019)			
Dura	ation: Three hours				Ma	aximum: 100 l	Marks
		PART A - (10	$\mathbf{x} \ 1 = 1$	10 Marks)		
1.	Pores with diameter les	ss than 2nm (20 A ^O	than 2nm (20 A ^O) are called				CO1- R
	(a) mesopores	(b) micropores	(c)) macrop	ores	(d) millipore	
2.	Adsorption data are fre	quently reported by	y				CO1- R
	(a) Adsorption isother	ms	(b) Catalyst deactivation				
	(c) Sigmoidal curve		(d)	none of	the above		
3.	When a catalyst increase the rate constant	ses the rate of a che	mical r	eaction,	the value of	C C	O1- R
	(a) Remains constant	(b)increases	(c) de	creases		(d) become	infinite
4.	For a solid –catalyzed offers negligible resistatof the reaction is			_			CO1- U
	(a) Greater than 5	(b) Greater th	an 1	(c) Grea	ater than 10	(d) Less tha	an 0.5
5.	Find the time required diffusion controls with 0.5 cm with reacting no coefficient is 10 cm/s v	molar density 0.0 noles of 0.25 mole	198 g/r s of B	nol with whose m	a radius of	•	O2- App
	(a) 92.663 s	(b) 100 s		(c) 5	5.5 s	(d) 76.8 s	
6.	Find the time required chemical reaction co mol/cm ³ , R=0.5 cm, b	ntrols with the f	followin	ng data	$\rho_{\rm B} = 0.183$		O2- App
	(a) 5505.4 sec	b) 4000.6sec	(c) 10	0.8 sec	(d) one of	the above	

7.	SO_2	SO ₂ can be absorbed in absorbers usingas solvent.					
	(a)	Dimethyl aniline (b) NaOH (c) Na ₂ CO ₃	(d) K_2CO_3				
8.	CO_2	can be absorbed in absorbers usingsolvent.	CO1- U				
	(a)	Ethanol amines (b) NaOH H ₂ SO ₄ (c) Copper Ammonium salts	d) H ₂ SO ₄				
9.	The	molecular weight of enzymes will be	CO1- U				
	(a)	> than 1000 (b) 2 (c) 10 (d) 20					
10.		ich of the following reactor arrangements causes fast etivation?	CO1- U				
	(a) N	Mixed flow for fluid (b) plug flow for fluid					
	(c) f	fluidized bed reactor (d) batch for fluid and solid					
		PART - B (5x 2= 10 Marks)					
11.	Wha	What are heterogeneous reactions?					
12.	Draw the plot of effectiveness factor versus Thiele modulus and suggest the information inferred.						
13.	What are the three contacting patterns used for gas-solid non catalytic reactions?						
14.	What are multiphase reactors? Give examples.						
15.	What is meant by catalyst regeneration?						
		PART C - $(5 \times 16 = 80 \text{ Marks})$					
16.	(a)	Explain in detail about the sol gel method in preparation of CO1 catalyst.	U (16)				
	<i>a</i> >	Or					
	(b)	Discuss in detail about the molecular (or) non dissociated CO1-adsorption.	U (16)				
17.	(a)	Derive the expressions for internal diffusion that takes place in a CO1 - single cylindrical pore with first order reactions and discuss about Thiele modulus and effectiveness factor Or	U (16)				
	(b)	Calculate the amount of catalyst needed in a packed bed reactor to CO2 - achieve 25 % conversion of 1000 m ³ /hr of pure gaseous A (C_{AO} = 1000 mol/m ³) for: A- \rightarrow R -r _A = 50 C _A /(1+0.02 C _A)	App (16)				

18. (a) Find the expression for fraction of B unconverted for mixed flow CO1- U of a size mixture of particles of unchanging size with uniform gas composition (16)

Or

- (b) Discuss in detail on shrinking core model and progressive CO1-U (16) conversion model and derive expression for diffusion through the layers.
- 19. (a) Discuss in detail the design considerations of various types of gas- CO1 -U (16) liquid reactors.

Or

- (b) Explain the mechanism and operation involved in a countercurrent CO1 -U flow (plug flow G +Plug flow L) contacting patterns for G/L contactors.
- 20. (a) Derive expressions for concentration-time behavior of the CO1-U (16) integrated M-M equation in a mixed flow fermentor.

Or

(b) Discuss about the inhibition of enzyme reactions by a foreign CO1-U substance with the kinetic expression for competitive and non competitive inhibition.