Reg. No. :					

Question Paper Code: 97902

B.E./B.Tech. DEGREE EXAMINATION, NOV 2023

Seventh Semester

Chemical Engineering

19UCH702 - TRANSPORT PHENOMENA

(Regulations 2019)

Duration: Three hours

Maximum: 100 Marks

Answer All Questions

PART A - (10 x 1 = 10 Marks)

1.	A vector field with a	CO1- U				
	(a) Irrotational	(b) Solenoidal	(c) Rotational	(d) Cycloidal		
2.	The source term in th	he source term in the momentum equation is				
	(a) Pressure force	(b) Body forces	(c) Viscous force	(d) Acceleration		
3.	Identify the maximum	n potential energy ir	a roller coaster is a	CO2- U		
	(a)The top of the stee	p climb	(b) somewhere during the cli	imb		
	(c) somewhere during	g the descent	(d)The lowest point after the	climb		
4.	Identify the diffusive	CO2-U				
	(a) Are specified		(b)Can be calculated			
	(c)Are not necessary		(d) Should be approximated			
5.	What is separation effected by in non-porous membranes?					
	(a) Differences In sol	ubility in the memb	rane			
	(b) Rate of species di	ffusion through the	pores			
	(c) Amount of feed to	the membranes				
	(d) Number of memb	ranes used				
6.	For solids and liquids	, specific heat is		CO1-U		
	(a) Depends on the pr	ocess	(b) Its independent of th	e process		
	(c) May or may not c	lepend on the proces	(d) None of the mention	ed		

A reaction occurs in a temperature is increas	CO1-U					
(a) Steady-state	(b) Unsteady-state				
(c) Cannot say	(d) None of the mentioned				
The ratio of number of moles of species A to the total number of moles CC of the mixture is known as						
(a) Mole fraction	(b) Mass fraction	(c) Partial pressure	(d) Mass density			
$CO_{2(g)} + C_{(s)} \rightleftharpoons 2CO_{(g)}$	_y) is an example for a		CO1-U			
(a) Homogeneous equ	(a) Homogeneous equilibrium					
(b) Heterogeneous eq	uilibrium					
(c) Neither homogene	ous nor heterogeneou	S				
(d) Both homogeneou	is and heterogeneous					
Which way is heat transfer believed to take place in a long, hollowCO1-Ucylinder that is kept at consistent but varied temperatures on its innerand outer surfaces?						
(a) Unpredictable		(b) Radial only				
(c) No heat transfer ta	ıkes place	(d) Axial only				
	PART – B (5 2	x 2= 10Marks)				
What is an example o	f transport phenomena	a?	CO1-U			
Compute the momentum flux for a system with lower plate having velocity CO2-App of 1m/sec.distance between the two plates is 1mm & viscosity is 1cp						
What is the analogy b	CO1-U					
How do you different	CO2-AP					
What is transport of molecules across a selectively permeable membrane? CO1-U						
	PART - C (2)	5 x 16= 80Marks)				
 (a) The lower plate greater than top 0.4x10⁻² N.s/m². (i) How far apart 0.3N/m². (ii) If oil of vise separated at a distingent (a) what is 	is being pulled at a plate. The fluid use should two plates be $\cosity = 2x10^{-2} \text{ N/m}^2$ stance calculated in pa	relative velocity of 0.4m/s ed is at 24 °C, Viscosity = placed so that shear stress = is used & plates are kept art (a) & velocity is same as	CO2-App (16)			
	A reaction occurs in a temperature is increase (a) Steady-state (c) Cannot say The ratio of number of of the mixture is know (a) Mole fraction $CO_{2(g)} + C_{(s)} \rightleftharpoons 2CO_{(g)}$ (a) Homogeneous equ (b) Heterogeneous equ (c) Neither homogeneous (d) Both homogeneous (d) Both homogeneous Which way is heat tra- cylinder that is kept a and outer surfaces? (a) Unpredictable (c) No heat transfer ta What is an example of Compute the moment of 1m/sec.distance be What is the analogy b How do you different What is transport of n (a) The lower plate greater than top $0.4 \times 10^{-2} \text{ N.s/m}^2$. (i) How far apart 0.3 N/m^2 . (ii) If oil of viso separated at a dis- in part(a), what is	A reaction occurs in a vessel such that its r temperature is increased, then the system is (a) Steady-state (((c) Cannot say ()) The ratio of number of moles of species A to of the mixture is known as (a) Mole fraction (b) Mass fraction $CO_{2(g)} + C_{(s)} \rightleftharpoons 2CO_{(g)}$ is an example for a (a) Homogeneous equilibrium (b) Heterogeneous equilibrium (c) Neither homogeneous nor heterogeneous (d) Both homogeneous and heterogeneous Which way is heat transfer believed to take cylinder that is kept at consistent but varied and outer surfaces? (a) Unpredictable (c) No heat transfer takes place PART – B (5 x What is an example of transport phenomena Compute the momentum flux for a system of 1m/sec.distance between the two plates is What is the analogy between heat and moment How do you differentiate homogeneous and What is transport of molecules across a selec PART – C ((a) The lower plate is being pulled at a greater than top plate. The fluid use $0.4x10^2$ N.s/m ² . (i) How far apart should two plates be $0.3N/m^2$. (ii) If oil of viscosity = $2x10^{-2}$ N/m ² separated at a distance calculated in pa in part(a), what is shear stress & shear	A reaction occurs in a vessel such that its mass does not change but its temperature is increased, then the system is which of the following? (a) Steady-state (b) Unsteady-state (c) Cannot say (d) None of the mentioned The ratio of number of moles of species A to the total number of moles of the mixture is known as (a) Mole fraction (b) Mass fraction (c) Partial pressure $CO_{2(g)} + C_{(s)} \rightleftharpoons 2CO_{(g)}$ is an example for a (a) Homogeneous equilibrium (b) Heterogeneous equilibrium (c) Neither homogeneous nor heterogeneous (d) Both homogeneous and heterogeneous (d) Both homogeneous and heterogeneous Which way is heat transfer believed to take place in a long, hollow cylinder that is kept at consistent but varied temperatures on its inner and outer surfaces? (a) Unpredictable (b) Radial only (c) No heat transfer takes place (d) Axial only PART – B (5 x 2= 10Marks) What is an example of transport phenomena? Compute the momentum flux for a system with lower plate having veloci of 1m/sec.distance between the two plates is 1mm & viscosity is 1cp What is the analogy between heat and momentum transfer? How do you differentiate homogeneous and heterogeneous reactions? What is transport of molecules across a selectively permeable membraned PART – C (5 x 16= 80Marks) (a) The lower plate is being pulled at a relative velocity of 0.4m/s greater than top plate. The fluid used is at 24 °C, Viscosity = $0.4x10^{-2}$ N.s/m ² . (i) How far apart should two plates be placed so that shear stress = $0.3N/m^2$. (ii) If oil of viscosity = $2x10^{-2}$ N/m ² is used & plates are kept separated at a distance calculated in part (a) & velocity is same as in part(a), what is shear stress & shear rate?			

- (b) Compute mean molecular velocity cm sec⁻¹ and mean free path CO2-App (16) of oxygen at 1 atm and 378.4 K Assume d =5.0 °A. What is the ratio of mean free path to molecular diameter in this situation?
- 17. (a) Estimate viscosity of saturated liquid water at 0 & 100 °C (to CO2- App (16) convert value at centipoise).

N=6.023 x
$$10^{23}$$
 gm.mole⁻¹
V=18cm³ gm.mole⁻¹
h= 6.624 x 10^{-27} gm.cm².sec⁻¹

- (b) The distance between two plates is 4 inch. The fluid is methanol CO2- App (16) at 328K having a viscosity of 0.27 kg/m.sec. Initial Velocity, v₁= 13ft/min & Final Velocity, v₂= -53ft/min.
 a) Calculate stress on each plate.
 - b) The fluid velocity at ½ inch intervals from each plate.

18. (a) (i) A plastic panel of area A is 929 cm² & thickness y is 0.64 cm CO2- App (16) was found to conduct heat at rate of 3.0 watts at steady state with temperature of T₀ is 24°C & T₁= 26°C on the two main surfaces. What is the thermal conductivity of plastic at 25°C? (ii) A thick- walled cylindrical tubing of hard rubber having an inside radius of 0.005 m & outside radius of a 0.02 m is being used as a temporary cooling coil in a bath. Ice water is flowing rapidly inside & inside wall temperature is 274.9 K. The outside surface temperature is 297.1K. A total of 14.65 W heats must be removed from bath by cooling coil how many m of tubing are needed? Thermal Conductivity is 0.151w/m.K Or

(b) Calculate the thermal conductivity of formaldehyde (CH₂O) & CO2- App (16) methane (CH₄) at 278 K & 1atm pressure stigma for CH₂O is 2.78 °A then a constant pressure at vector level for CH₂O is 8.43 cal/g.mole.K, lennard-jones intermolecular potential model is 2.018 & resistance for CH₂O is 3.879 for viscosity of CH₄ at stigma is 2.744 °A then a constant pressure at vector level for CH₄ is 6.45 cal/gmole.K & lennard-jones intermolecular potential model is 1.165& resistance for CH₄ is 1.348?

19. (a) A value of DAB is $0.225 \text{ cm}^2/\text{s}$ has been found for the system CO2-App (16)CO2 -air at 108°F & 1atm.calculate DAB at 295°F by following methods. (a) Slattery Equation (b) Chapman-Enskog Theoretical Equation Data (Total pressure of compound A)108°F=1.074 (Total pressure of compound B)295°F=0.347 Or (b) (i) Estimate DAB for a dilute solution in propane at 27°C. CO2- App (16)Data U=0.507cp $VA^{1}=160cc/gmole$ Association Parameter for Solvent 'B'=3.0 for propane MB = 87.33 for propane T = 373K(ii) The value of DAB for a dilute solution of ethanol in water at 27°C is $1.56 \times 10^{-5} \text{ cm}^2/\text{s}$. calculate DAB for the same solution at 150°C. (u_1 at 27°C =1.41cp & u_2 at 150°C = 0.248cp.) 20. (a) Based on analogy a large tank filled with a mixture of Methane & CO2- App (16)air is connected with second tank filled with a different composition of methane &air. Both tanks are at 100 KN/m² & 0°C. The connection between tanks is a tube of Inner Diameter is $2x10^{-1}$ ³ m & length of 0.15 m calculate steady rate of transport of Methane through tube when concentration of methane is 90% (mole) in one tank 5% (mole) in other, DAB is $1.57 \times 10^{-5} \text{ m}^2/\text{s}$ (at 0°C & 100 KN/m²) Assume that transport is by molecular diffusion, (5% will be a residue). Or

(b) Derive an expression for a closed path method. CO2- App (16)