A		Reg. No. :												
		Question	Pap	er (Cod	le:U	4 M	24						
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2023													
		Fo	urth	Sem	ester									
		Bio Me	edica	l Eng	ginee	ering								
	21UMA424	- PROBABILIT	Y A	ND]	INFE	EREI	NTIA	AL S	ГАТ	ISTI	CS			
		(Commor	n to E	Bio T	echr	nolog	gy)							
		(Reg	gulat	ions	2021	l)								
Dur	ration: Three hours								М	Maximum: 100 Marks				
	Answer ALL Questions													
		PART A -	· (10	x 1 =	= 10	Mar	ks)							
1.	The r th moment about	origin is											CO	6- U
	(a) $\mu(X)$	(b) $\mu(X^2)$			(c) µ	$\iota(X^r)$)			(d) 1	None	oftl	ne ab	ove
2.	For Binomial distribution mean is 6 and variance is 2 find $P[X=x]$]			С	01-	App	
	(a) $9c_x \frac{2^x}{3} \frac{1}{3}^{n-x}$	(b) $6c_x \frac{1}{3} \frac{x}{3} \frac{2}{3}^{n-2}$	- x		(c) 2	$c_x \frac{1}{2}$	$\frac{x}{2}$	- x	((d) no	ne o	f the	abov	/e
3.	Correlation coefficien	t value lies betw	veen										CO	6- U
	(a) -1 to 0	(b) -1 to +1			(c) 1	to 0					(d)	0 to	1	
4	The regression lines o	f two random va	ariab	les X	I,Y is	s giv	en by	У				С	02-	Ana
	3x + y = 10, $3x + 4y = 12$. The correlation between X, Y is													
	(a) 1/2	(b)-1/2			(c)-1						(d)	1		
5.	Autocorrelation function is maximum at $\tau =$									С	03-	App		
	(a) 0	(b)1			(c) -	1					(d)	8		
6.	If the Random Process $R(\tau) = 16 + 9e^{- \tau }$ then t	as ${X(t)}$ with m he mean value is	nean S	has	Aut	0 CO	rrela	tion	func	tion		CC)3- A	рр
	(a) 16	(b) 25			(c) 0						(d)	4		

7. If X(t) is the white noise process, then its power spectrum is given by

CO6- U

(a)
$$S(\omega) = \frac{N_0}{4\pi}$$
 (b) $S(\omega) = \frac{N_0}{4}$ (c) $S(\omega) = \frac{N_0}{2} \delta(\tau)$ (d) $S(\omega) = \frac{N_0}{2}$
8. The average power of the auto correlation function is $R_{xx}(\tau) = 3e^{-3|\tau|}$ CO4- App
(a)3 (b)6 (c)2 (d) 0
9. F-test is used to test for equality of _____ CO6- U
(a) Sample Mean (b) Variance (c) Population mean (d) All the above
10. F-test is used to test for equality of _____ CO6- U
(a) Sample Mean (b) Variance (c) Population mean (d) All the above
PART – B (5 x 2= 10Marks)
11. A Continuous random variable with density function is given by $CO1$ -App
 $f(x) = 6x(1-x), 0 \le x \le 1$ Check the above is PDF or not.
12. Find the value of K, if $f(x, y) = K_{xy}$ in $0 \le x$, $y \le 1$ is to be the joint density CO2-Ana function

- 13. Compute the mean square value of the auto correlation function CO3-App $R(\tau) = 25 + \frac{4}{1+6\tau^2}$
- 14. Calculate the value of the system transfer function, if the input of the system CO4-App with impulse response $h(t) = e^{-3t} U(t)$.
- 15. Give two types of errors in testing a statistical hypothesis. CO5-Ana

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) (i) A Random Variable X has the following probability CO1-App (8)distribution

X=x	0	1	2	3	4	5	6	7
P(X=x)	0	k	2k	2k	3k	k ²	$2k^2$	$7k^2+k$
Find (i	i) 'k'							

(ii) P(X > 6), P(0 < X < 4)

(ii) Define Binomial distribution. Find the moment generating CO1-App (8) function and Hence find mean and variance.

 $CO1_Ann$ (8)

(b)
(i) If
$$f(x) =\begin{cases} \frac{k}{1+x^2}, -\infty < x < \infty \\ o, elsewhere \end{cases}$$
 is the Probability Density Function (8)

of a Random variable X ,
(i) Find K (ii) distribution function of F(x).
(ii) State and Prove the memoryless property for an Exponential CO1-App (8) Property

17. (a) If the joint probability density function of X and Y is given by CO2-Ana (16)
f(x, y) = 2 - x - y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
Find the correlation coefficient between X and Y.

Or

- (b) If the joint Probability density function of X and Y is given by CO2-Ana (16) $f(x, y) = \frac{1}{8}(6 - x - y), \quad 0 < x < 2, 2 < y < 4$ Find (a) $P(X < 1 \cap Y < 3)$ (b) P(X < 1/Y < 3) (c) P(X + Y < 3)
- 18. (a) (i) If the auto correlation function of the random binary CO3-App (8) transmission is given by

$$R_{XX}(\tau) = \begin{cases} 1 - \frac{|\tau|}{T} & ; |\tau| \le T \\ 0 & ; |\tau| \ge T \end{cases}$$

Find the Power spectral density function.

(ii) A stationary process has an autocorrelation function given by CO3-App (8) $R(\tau) = 25 + \frac{4}{1+6\tau^2}$ Find the Mean and Variance

(b) (i) If the Power spectral density of a WSS processes is given by CO3-App (8)

$$\mathbf{S}(\boldsymbol{\omega}) = \begin{cases} \frac{\mathbf{b}}{\mathbf{a}} (\mathbf{a} - |\boldsymbol{\omega}|) & ; & |\boldsymbol{\omega}| \leq \mathbf{a} \\ \mathbf{0} & ; & |\boldsymbol{\omega}| > \mathbf{a} \end{cases}$$

Find the auto correlation function of the Process

(ii) Find power spectral densities of the following auto correlation CO3-App (8) function $R(\tau) = e^{\frac{-\alpha^2 \tau^2}{2}}$

19. (a) If the input to a time invariant stable linear system is a wide sense CO4-App (16) stationary process. Prove that the output will also be a wide sense stationary process

(b) A random process X (t) having the autocorrelation function CO4-App (16) $R_{xx(\tau) = P e^{-\alpha |r|}}$ Where b is a constant is applied to the input of the system with impulse response h(t) = e^{-bt}U (t) where b is a constant. Find the autocorrelation of the output Y (t).

Or

20. (a) Two researchers A and B adopted different techniques while rating CO5-Ana (16) the student's level. Identify the Sampling distribution; Can you say that the techniques adopted by them are significant?

Researchers	Below	Average	Above	Genius	Total
	Average		Average		
А	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300

ſ	٦	
L	Jr	
Ľ	~	

(b) Two independent samples of sizes 9 and 7 from a normal CO5-Ana (16) population had the following values of the variables.

Sample	18	13	12	15	12	14	16	14	15
Ι									
Sample	16	19	13	16	18	13	15		
II									

Identify the sampling distribution, Do the estimates of the population variance differ significantly.