

Reg. No. :

A

8.	The Fourth order Rung solution to differential		used widely in	CO6- U
	(a) abstract	(b) graphical	(c) numerical	(d) None of these
9.	PDE of second order, i	$f B^2 - 4AC > 0$ then		CO6- U
	(a) parabolic	(b) elliptic	(c) hyperbolic	(d) None of these
10	$u_{xx}+u_{yy}=f(x,y)$ is a	equation		CO6- U
	(a) elliptic	(b) parabolic	(c) hyperbolic	(d) Non homogeneous

PART - B (5 x 2 = 10 Marks)

- 11. The coefficient of Rank correlation of marks obtained by 10 students in Maths and CO1- App Physics was found to be 0.8. It was late discovered that the difference in ranks in two subjects obtained by one of the student was wrongly taken as 5 instead of 8. Find the correct coefficient of Rank correlation.
- 12. What are Type I and Type II error? CO6-U

13. Transform the curve
$$y = ae^{bx}$$
 into the straight line equation form CO6- U

14. Using Euler's method find y(0.1) given $\frac{dy}{dx} = 1 + y^2$, y(0) =0 CO4 - App

15. Classify
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 CO5 -App

PART - C	$(5 \times 16 =$	80Marks)
----------	------------------	----------

16.	(a)	(i) C	alculate	the c	coeffi	cient	ofco	rrelat	ion o	f the	follov	wing data	CO1- App	(8)
				-				~ ~	10					

Х	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

(ii) Calculate the Correlation coefficient between X and Y from following CO1- App (8) table

Y	30-40	40-50	50-60	60-70	70-80						
150-155	1	3	7	5	2						
155-160	2	4	10	7	4						
160-165	1	5	12	10	7						
165-170	-	3	8	6	3						
Or											

(b) (i) Calculate the rank correlation coefficient of the following data

										•	
Σ	X	68	64	75	50	64	80	75	40	55	64
λ	ľ	62	58	62	45	81	60	68	48	50	70

(ii) Calculate the Regression equation between the marks in X and Y CO1- Ap

Х	12	15	17	18	23	16	25	29
Y	110	120	124	130	136	122	140	143

17. (a) (i) Two independent samples of sizes 9 and 7 from a normal population CO2- Ana (8) had the following values of the variables. Do the estimates of the population variance differsignifically at 5% level?

Sample I	18	13	12	15	12	14	16	14	15
Sample II	16	19	13	16	18	13	15		

(ii) Four coins are tossed 160 times. The number of heads observed is CO2- Ana (8) given below. Examine if the coins are unbiased, by employing χ^2 goodness of fit.

No of Heads	0	1	2	3	4
Frequency	17	52	54	31	6
			Or		

(b) (i) Two researchers A and B adopted different techniques while rating the CO2- Ana (8) students level. Can you say that the techniques adopted by them are significant?

Researchers	Below	Average	Above	Geniu	Total
	Average		Average	S	
А	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300

(ii) To verify whether a course in accounting improved performance, a CO2- Ana (8) similar test was given to 12 participants both before and after the course.The marks are: Was the course was useful?

Before	44	40	61	52	32	44	70	41	67	72	53	72
After	53	38	69	57	46	39	73	48	73	74	60	78

CO1- App (8)

CO1- App (8)

18. (i) Applying least square method techniques fit a straight line y = ax + b(a)

Х	5	10	15	20	25
Y	16	19	23	26	30

(ii) Applying method of moments fit a straight line y = ax + b

Х	2	4	6	8	10	12	14
Y	20.3	18.5	17	14.8	13	11.2	9.4
	Or						

(i) Fit a straight line fit of the form y = a + bx(b)

Х	0	5	10	15	20	25
Y	12	15	17	22	24	30

(ii) By Applying group average method, obtain a second degreecurve CO3- App (8)which fits best in the following data

Х	87.5	84.0	77.8	63.7	46.7	36.9
Y	292	283	270	235	197	181

19. (a) Given $\frac{dy}{dr} = x^3 + y$, y(0) = 2, y(0.2) = 2.443, y(0.4) = 2.99, CO4- App (16)

y(0.6) = 3.68 Find y(0.8) by Milne's Predictor & Corrector method.

Or

(i) Using R-K method of fourth order, find y(0.1) for the initial value CO4- App (b) (8) problem $\frac{dy}{dx} = x + y^2$ with y(0) = 1(ii) Using Taylor's series method find y(1.1) given y' = x + y with CO4-App (8)

h=0.1 & y(1) = 0

20. (a) (i) Solve
$$\frac{\partial^2 u}{\partial x^2} = 32 \frac{\partial u}{\partial t}$$
, $u(0,t) = 0$, $u(1,t) = t$, $u(x,0) = 0$. Take CO5- App (8)

h = 0.25 and find the values of u up to t = 5 using Bender-Schmidt's difference equation.

Or

(ii) Using Crank-Nicholson's difference equation to solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ CO5- App (8)u(0,t) = 0, u(1,t) = t, u(x,0) = 0. compute u for one time step function with h=0.25 .

Solve the Poisson equation $u_{xx} + u_{yy} = -81 xy$, $0 \le x \le 1$, $0 \le y \le 1$, u(0,y)=0, CO5-App (b) (16)u(x,0) = 0, u(1,y)=100, u(x,1)=100 and h=1/3

CO3- App

CO3- App (8)

U3029

CO3- App (8)

(8)

U3029