A		Reg. No. :												
Question Paper Code: U5M01														
B.E./B.Tech. DEGREE EXAMINATION, NOV 2023														
Fifth Semester														
Artificial Intelligence & Data Science														
21UMA501 - LINEAR ALGEBRA														
(Regulations 2021)														
Duration: Three hours Maximum: 100 Ma									arks					
Answer ALL Questions														
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$														
1.	1. In a vector space V, for every $x, y \in V$ then the property $x + y = y + x$ is CO6-U known as													
	(a) commutative	commutative (b) associative				(c) identity					(d) inverse			
2.	The trivial subspaces of a vector space V are									CO6-U				
	(a) $\{0\}$ (b) V			(c	(c) W						(d) $\{0\}$ and V			
3.	If T: V \rightarrow W be linear transformation then T(0) =										CO6- U			
	(a) 0 (b) 1				(c) 2						(d) 3			
4.	In a linear transformation T: $V \rightarrow W$ the kernel of T is a subspace of CO6-V									2 06- U				
	(a) V	(b) W		(c	c) bot	hVa	and V	N		(d) nor	ne of	these	
5.	$\langle x, x \rangle = 0$ if and only if										С	06- U		
	(a) $x = 1$	(b) $x \neq 1$		(c	$(\mathbf{C}) x = 0$				(d) $x \neq 0$					
6.	In a vector space V, if	pace V, if $\langle x, y \rangle = \langle y, z \rangle$ then									С	06- U		
	(a) $y = z$	$y = z \qquad (b) y \neq z$		(c	(c) $y = -z$					(d	(d) none of these			
7.	The Hermitian Matrices containing some numbers.								CO6- U					
	(a) Real	(b) Imaginar	у	(c	e) Nat	ural				(d) None of thes				

8.	Eve	ry self - adjoint m	CO6- U								
	(a) I	Linear	near (b) Co - factor (c) None Linear								
9.	A square matrix A is said to be if the determinant value of A CO6- U is zero.										
	(a) S	Singular	(d) none of these								
10.	Line varia	ear Programming able.	CO6- U								
	(a) (Optimization	nization (b) Formulation (c) Technique								
PART - B (5 x 2 = 10 Marks)											
11.	1. Verify the commutative property for a vector space $R \times R$ over R under CO1-App addition defined by $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$										
12.	State	e any two propert	CO6-U								
13.	Find	the norm of (2,1	CO3 -App								
14.	Defi	ine Cholesky dec	CO6-U								
15.	Fin	d the characterist	CO5- App								
	$\begin{pmatrix} 1\\ 2 \end{pmatrix}$	$\begin{pmatrix} 4\\ 3 \end{pmatrix}$									
			PART – C (S	5 x 16= 80Marks)							
16.	(a)	(i) Verify the ve R^3	CO1- App	(8)							
		(ii) Prove that 2 Scalar multiplic and $\alpha(x_1,x_2) = (\alpha$	CO1- App	(8)							
	(b)	(i) Find the dime	CO1 -App	(8)							
		(1,2,-3),(2,5,1)									
		(ii) In \mathbb{R}^3 determined of the combination of \mathbb{R}^3	CO1 -App	(8)							
17.	(a)	(i) If T: R^2 $T(a_1, a_2) = (a_1 + one?)$ Is T onto?	CO2- App	(8)							
			formation T: $R^2 \rightarrow R^2$ defined	CO2- App	(8)						
			2								

U5M01

(b) T: $V_1(R) \rightarrow V_3(R)$ is defined by $T(a_1) = (a_1, 2a_1^2, a_1^3)$ Verify CO2-App (16) whether T is a linear transformation

18. (a) (i) Show that the following function defines an inner product on CO3- App (8) $V_2(R)$ where $x = (x_1, x_2)$ and $y = (y_1, y_2)$ and $\langle x, y \rangle = 6x_1y_1 + 7x_2y_2$ (ii) If x = (2, 1 + i, i) and y = (2 - i, 2, 1 + 2i) then verify Schwarz's CO3- App (8) inequality.

- Or
- (b) Apply Gram-Schmidt process to construct an orthonormal basis for CO3- App (16) $V_3(R)$ with the standard inner product for the basis $\{v_1, v_2, v_3\}$ where $v_1 = (1,0,1)$, $v_2 = (1,3,1)$ and $v_3 = (3,2,1)$
- 19. (a) Determine the Cholesky Decomposition for CO4- App (16) $A = \begin{pmatrix} 4 & 2i & -i \\ -2i & 10 & 1 \\ i & 1 & 9 \end{pmatrix}$

Or

(b) Determine the Cholesky Decomposition for CO4- App (16) $A = \begin{pmatrix} 16 & -3 & 5 & -8 \\ -3 & 16 & -5 & -8 \\ 5 & -5 & 24 & 0 \\ -8 & -8 & 0 & 21 \end{pmatrix}$

20. (a) Diagonalise the Matrix
$$\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$$
 and hence find A⁴. CO5- App (16)
Or

(b) Discuss by an Orthogonal reduction of $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$ CO5- App (16)

U5M01