A					,								
		Reg. No. :											
		Question	Paper	Cod	e: U	J 2M	[07						
B.E./B.Tech. DEGREE EXAMINATION, NOV 2023													
Second Semester													
Agriculture Engineering													
21UMA207- CALCULUS COMPLEX ANALYSIS AND TRANSFORM TECHNIQUES													
(Regulations 2021) (Common to bio medical and biotechnology engineering branches)													
Duration: Three hours Maximum: 100 Marks													
Dur	tion. Three hours	Answe	er ALL (Juesti	ions			IVIAA	IIIIu		JU 1 1 1	arks	
PART A - $(10 \times 1 = 10 \text{ Marks})$													
1.	The order and degree of $(v^{"})^2 + 2(v^{"})^3 + v = 0$ is CO1-App												
	(a) 3.2 (b) 2.3 (c) 3.3 (d) 2.2							11					
2	The solution of $(D^3 +$	(0)2, 5 - $D^2 - D - 1)v = 0$	is	() 5,	J					(u) 2	,2	CO	6 - U
	(a) $Ae^{x} + Bxe^{x} + Cx^{2}e^{x}$ (b) $(Ax + B)e^{x}$						+ C (e ^{-x}				00	00
	(c) $e^{-x} + (\cos 2x + i \sin 2x)$ (d) $(Ax + i)$				$B)e^{-x} + C e^{x}$								
3.	Divergence of vector $\mathbf{x}^2 \mathbf{i} + \mathbf{y}^2 \mathbf{i} + \mathbf{z}^2 \mathbf{k}$ at (1, 2, -3) is										C	02-A	pp
	(a) 8	(b) 4		(c) -3		_	(d) 0						
4.	If $\varphi = x^2 + y^2 - z - 10$ then $ \nabla \varphi $ at (1, 1, 1) is								(C	202-4	Арр	
	(a) $2(\vec{i} + \vec{j} + \vec{k})$	(b) $2i + 2j - k$,	(c) 3	_			(d)	9				
5.	The critical point of the transformation $w = z + \frac{1}{z}$ are									COé	5- U		
	(a) ±1	(b) ±2		(c) ±i	į			(d)	– i				
6.	The mapping $w = z^2$	² is not conforma	l at									CO	5- U
	(a) 0	(b) -1		(c) 1	-			(0	ł) 2				
7.	Simple pole is a pole	of order	_									CO	6-U
	(a) 1	(a) 2		(a) 3					(a) 4	ļ			

8.	The	poles of $z \cot z$ is		CO6-U							
	(a)	0	(b) $\pm n\pi$	(c) 1	(d) π						
9.	L (s	in h at) =				CO6-U					
	(a) -	$\frac{s}{s^2 - a^2}$	$(b)\frac{a}{s^2-a^2}$	$(c)\frac{s}{s^2+a^2}$	(d) $\frac{a}{s^2 + a^2}$						
10.	Sin	t is a periodic func		CO6-U							
	(a) 2	2π	(b) π	(c) $\pi / 2$	(d) π / 3						
$PART - B (5 \times 2 = 10 Marks)$											
11.	Find the Particular Integral of $(D^2 + 4D + 4)y = \frac{e^{-2x}}{x^2}$ CO1-App										
12.	Finc	l the Directional de	2	CO2-App							
	dire	ction $2\vec{i} + 3\vec{j} + 4\vec{k}$.									
13.	Finc	l the fixed point of		CO3-App							
14.	Eva	luate $\int_{c} \frac{e^{-z}}{z+1} dz$ whe		CO4-App							
15.	Veri	ify initial value the		CO5-App							
			PART – C	C (5 x 16= 80Marks)							
16.	(a)	(i) Using method cosec ax.	CO1-Aj	op (8)							
		(ii) Suppose a ma quantity of the m If there are 2000	CO1- A o.	.pp (8)							
	(b)	(i) Solve: $(D^2 + 4)$	CO1- A	.pp (8)							
		(ii) Solve: $(D^2 -$	$4D+3)y = \sin 3x + e$	2 x	CO1- A	pp (8)					
17.	(a)	Verify Gauss Div where S is the sum 0, x = a, y = 0, y	vergence theorem for face of the cuboid y = b, z = 0 & z = 0	for $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ formed by the planes $x = c$.	CO2-Aj	op (16)					

2

U2M07

- (b) Verify Green's theorem for $\int x^2 dx + xy dy$, where C is bounded by CO2 -App (16) C x = 0, x = a, y = 0, y = a
- 18. (a) (i) Find the image of |z - 3i| = 3 under the transformation $w = \frac{1}{z}$ CO3-App (8) (ii) If f(z) = u +iv is a regular function of z in a domain D the CO3-App (8) following relation hold in D. $\nabla^2 |f(z)|^2 = 4 |f'(z)|^2$ Or
 - (b) (i) Find the image of |z-1| = 1 under the transformation $w = \frac{1}{z}$ CO3-App (8) (ii) If f(z) is analytic whose real part is constant must itself be a CO3-App (8) constant.

19. (a)
(i) Evaluate
$$f(z) = \int_{C} \frac{\cos \pi z^{2} + \sin \pi z^{2}}{(z-1)(z-2)} dz$$
 by using Cauchy's
Integral formula where C is $|z| = 3$
CO4-App (8)

(ii) Expand
$$\frac{z-1}{(z+2)(z+3)}$$
 as Laurent's series valid in the region
 $2 < |z| < 3$
(8)

Or
(b) Using Contour integration, to prove

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{a + b} a > b > 0$$
(16)

20. (a) (i) Solve the differential equation $\frac{d^2y}{dt^2} + y = \sin 2t$; y(0) = CO5-App (8) 0; y'(0) = 0 by using Laplace transform method. (ii) Find the inverse Laplace Transform of $\frac{s+3}{(s+1)(s^2+2s+3)}$ CO5-App (8)

Or

(b)
(i) Find the Laplace transform of
$$f(t) = \begin{cases} \sin \omega t , \ 0 < t < \frac{\pi}{\omega} \\ 0 & , \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$$
(ii) Solve by using convolution theorem $L^{-1} \left[\frac{s}{(s^2 + a^2)(s^2 + b^2)} \right]$
(2) CO5-App (8)