A		Reg. No. :										
		Question Pa	per C	ode:	9402	25						-
	B.E./I	B.Tech. DEGREE F	EXAM	INAT	ION,	NOV	202	3				
		Fourth	n Seme	ster								
		Agricultur	re Engi	neerii	ıg							
	19UMA4	125 - Probability, S	tatistic	s and	Nume	rical	Meth	nods				
		(Regula	ations 2	2019)								
Dur	ation: Three hours						Max	kimu	m: 1	00 N	larks	3
		Answer A	LL Qu	estion	15							
		PART A - (10	0 x 1 =	10 M	larks)							
1.	Which of the following	g discrete distributi	on has	equal	mean	and	varia	nce?)		CC)6-R
	(a) Binomial	(b) Poisson		(c) G	amma		(0	d) Uı	nifor	m		
2.	The limiting form a Po	oisson distribution i	S								CC)6- U
	(a) Geometric	(b) Binomial		(c) N	ormal		(d) No	one c	of the	e abo	ove
3.	The degrees of freedom	n in t-tests is									CO	6-U
	(a) n-1	(b) n-2		(c) n-	-3	(d) n-	4				
4.	Chi-square test is very	popularly known a	is a tes	t of							CC)6-R
	(a) Independent of attr	ibutes (b) t- tes	t	(c) F-	-test	(d	l) goo	odne	ss of	fit		
5.	Latin square design is	a									CO	6- U
	(a) One way	(b) Two way		c) Tl	nree w	yay		d) 1	None	e of t	hese	
6.	The science of experim	nental designs is as	sociate	d wit	h the r	name					CC)6-U
	(a) Latin square	(b) Latin cube		(c) R	BD		((d) N	lone	of th	lese	
7.	In Cubic Spline, M0=1	Mn=									CC)6-U
	(a) 1	(b) n	(c)) 3				(d) (0			
8.	Newton's forward intervals	interpolation	form	ıla	used	01	nly	fo	r		CC)6-U
	(a) equal	(b) unequal	(c)	equal	and u	inequ	al	(d)	non	e of t	these	,

9.	Trap sum	ezoidal rule of	e is so trapez	o call zoids	ed, be	cause	e it ap	proxi	mates	the int	tegral	by th	e	C	06-U
	(a) n	L		(b)	n+1			(c) n-1			(d) 2n			
10.	In Si	impson's 3/8	8 rule	the n	umbe	r of s	ubinte	rvals	should	d be				С	06-U
	(a) n	nultiple of 1	l	(b)	multi	iple o	f 2	(c) mu	ltiple of	f 3		(d) All	of the	ese
					PA	RT –	B (5 x	2= 1	0Marl	ks)					
11.	A Co	ontinuous ra	ndom	n varia	able w	vith d	ensity	funct	tion is	given l	у			COI	-App
	f(x)	= 6x(1-x),	$0 \le x \le$	≤ 1 Ch	eck th	ie abo	ove is 1	PDF (or not.						
12.	Give	e two types o	of erro	ors in	testin	g a st	atistic	al hy	pothes	is				С	06-U
13.	For sum respe	a one way of squares ectively, cor	classi of t npute	ficati reatm the v	on on nent a /alue (12 o and sof the	observ um of F – ra	ation f squ tio.	s invo ares o	lving 3 of total	3 trea are	ttments 8 and	s the d 36	CO3	8-App
14.	State and	e Lagranges (X_2, Y_2) are	interj given	polati	on foi	rmula	for th	ree s	et of v	alues (X ₀ ,Y	0) , (X	1,Y1)	C	06-U
15.	Eval	uate using t	wo –p	oint	Gauss	ian q	uadrat	ure fo	ormula	$\int_{-1}^{1} (3x)^{2}$	$^{2} + 5x$	x^4) dx		COS	5-App
					P.	ART	– C (5	x 16	= 80N	larks)					
16.	(a)	Define Gar and Hence	nma find r	distril nean	bution and v	. Fin arian	d the 1 ce. Or	nome	ent gei	nerating	g fun	ction	CO1-A	Арр	(16)
	(b)	(i) Using the Compute the and variance	he pro ne mo ce.	obabi oment	lity m gene	ass f rating	unctio g funct	n for ion a	Bino1 nd he1	nial di nce fino	stribu 1 its 1	ition, nean	CO1- 4	Арр	(8)
		(ii) Using a	ın Exp	oonen	ntial di	istribı	ation S	State a	and Pr	ove the	men	nory	CO1- /	App	(8)
		less proper	ty												
17.	(a)	(i) Two ii pop	ndepe ulatio	ndent n had	t samp l the f	oles o ollow	f sizes ving va	9 and	d 7 fro of the	om a no variabl	rmal es.		CO2-A	Арр	(8)
		Sample I	18	13	12	15	12	14	16	14	15				
		Sample	16	19	13	16	18	13	15						

Π

(ii) Two horses A and B were tested according to time (in seconds) CO2-App (8) to run on a particular track with the following results:

1					0		
Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	
			-	-			-

Test whether horse A is running faster than B at 5% level..

r	٦	
ι	Л	

(b) (i) A company keeps records of accidents. During a recent safety CO2 -Ana (8) review, a random sample of 60 accidents was selected and classifields by the day of the week on which they occurred.

Days	Mon	Tue	Wed	Thu	Fri
No.of. accidents	8	12	9	14	17

(ii) To verify whether a course in accounting improved CO2 -Ana (8) performance, a similar test was given to 12 participants both before and after the course. The marks are:

Befor	44	40	61	52	32	44	70	41	67	72	53	72
e												
After	53	38	69	57	46	39	73	48	73	74	60	78
Waatha	0.011#		0.0.110	af.19								

Was the course was useful?

18. (a) Analyze the variance in the latin square of yields(in kgs) paddy CO3-U (16) where P,Q,R,S denote the different methods of cultivation.

S122	P121	R123	Q122
Q124	R123	P122	S125
P120	Q119	S120	R121
R122	S123	Q121	P122
		Or	•

(b) Four varieties A, B, C, D of a fertilizer are tested in a randomized CO3-App (16) block design with 4 replication. The plot yields in pounds are as follows.

	1	2	3	4
1	A(12)	D(20	C(16)	B(10
2	D(18)	A(14	B(11)	C(14
3	B(12)	C(15	D(19)	A(13
4	C(16)	B(11	A(15)	D(20

Analyze the experimental yield.

19. (a) (i) From the data given below, find the number of students whose CO4-App (8) weight lies between 60-70

Weight in lbs	0-40	40-60	60-80	80-100	100-120
No. of Students	250	120	100	70	50

(ii) Using Lagrange's interpolation formula calculate the profit in CO4-App (8) the year 2000 from

year	1997	1999	2001	2002
Profit (Rs.in lakhs)	43	65	159	248

(b) Fit a natural cubic spline for the following data

Χ	-1	0	1	2
Y	-1	1	3	35

20. (a) Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ by using Romberg's method correct to 3 decimal CO5-App (16)

places

(b) Evaluate $\int_{0}^{1} \int_{0}^{1} e^{-(x+y)} dxdy$ by (i). Trapezoidal (ii) Simpson's rule by taking h=k=0.5 (16)

CO4-App (16)