A		Reg. No. :										
		Question Pap	er Code: U	5A03								
	B.)	E. / B.Tech. DEGREE]	EXAMINATI	ON. NO	J V 20)23						
		Fifth	Semester	,								
		Agricultur	al Engineering									
	21UAG503-STF	RENGTH OF MATERI	ALS FOR AG	RICUL	TUR	E El	NGI	NEE	RS			
		(Regula	tions 2021)									
Du	ration: Three hours	Answer A	LL Questions		Max	kimu	m: 1	00 N	/larl	κs		
		PART A - (10	$0 \ge 1 = 10 $ Mar	ks)								
1.	The ratio of ultimate	e stress to allowable stre	ess is called							CO	1- U	
	(a) Frature	(b) maximum stress	(c) theories	of failur	e	(d) factor of safety						
2.	Stress is defined as t	the ratio of								CO	1- U	
	(a) Load to area	(b) pressure to area	(c) load to v	olume		(d)) pre	ssure	e to	volu	ıme	
3.	Which equation is used to find out the perfect frame CO							1- U				
	(a) m= 2j+3	(b) m= 2j-2	(c) m= $2j-3$			(d)) m=	2j+2	2			
4.	A frame in which al	l member not lie in a si	ngle frame is c	alled						CO	1- U	
	(a) Plain frame (b) Space frame (c) deficient frame					(d) redudant frame						
5.	The bending momer	nt at end supports of a s	imply supporte	ed beam	is					CO	1- U	
	(a) maximum	(b) minimum	(c) zero			(d) uni	form	L			
6.	Sagging, the bending	g moment occurs at the	of the l	beam.						CO	1- U	
	(a) At supports	(b) Mid span	(c) Point of co	ntraflex	ure	(d)) Poi	nt of	em	erge	ence	
7.	is a measure of the strength of shaft in rotation.									CO	1- U	
	(a) Polar modulus	(b) Sectional modulus	s (c) Torsie	on modu	llus	(d)) Tor	sion	al ri	igidi	ity	
8.	The units of torsional rigidity is						CO1- U					
	(a) Nmm^2	(b) N/mm	(c) N-mm			((1) N					
						`	,					

9. The radius of curvature of the deflected beam is

(a)
$$\frac{M}{I} = \frac{E}{R}$$
 (b) $\frac{M}{J} = \frac{E}{R}$ (c) $\frac{N}{I} = \frac{E}{R}$ (d) $\frac{M}{C} = \frac{E}{R}$

10. Deflection of simply supported beam with point load as centre is---

(a)
$$y_c = \frac{w \, l^3}{48EI}$$
 (b) $y_c = \frac{w \, d^3}{EI}$ (c) $y_c = \frac{w \, ld^3}{EI}$ (d) $y_c = \frac{w \, d^3}{El}$

$$PART - B (5 x 2 = 10 Marks)$$

- 11. Define poison's ratio **CO1-** U 12. List out the types of method of analysis of truss. CO1- U 13. List out the types of beam. **CO1-** U 14. State the assumption made in the derivation of torsion equation in shafts. CO1- U 15. Shortly give the notes of moment area method for finding deflection. **CO1-** U $PART - C (5 \times 16 = 80 Marks)$
- 16. (a) A steel bar 300 mm long, 50 mm wide and 40 mm thick is subjected CO2- App (16) to a pull of 300 kN in the direction of its length. Determine the change in volume. Take E for steel is 2×10^5 N/mm² and μ =0.25

Or

- (b) A rod of 150 cm long and of diameter 2 cm is subjected to an axial CO2- App (16) pull of 20 kN. If the modulus of elasticity of the material of the rod is 2×10^5 N/mm². Determine(i) stress (ii) strain (iii) the elongation of the rod
- 17. (a) Determine the forces in all the members of the truss shown in fig. by CO2- App (16) using the method of joints.

CO1- U

CO1- U

(b) Determine the forces in the members BC, BD and DE of the truss CO2- App (16) shown in fig. using the method of section.

18. (a) A cantilever beam of length 2 m carries a uniformly distributed load CO2- App (16) of 1 kN/m run over the entire length of 1.5 m from the free end draw the shear force and bending moment diagrams for the cantilever.

Or

- (b) A 9 m length of SSB carries point load of 5 kN and 8 kN at distances CO2- App (16) of 3 m and 6 m from the left end. Draw the shear force and BM diagrams for the SSB
- 19. (a) Derive the equation for torque developed by the hollow circular shaft CO2- App (16) and give the assumptions.

Or

- (b) The shearing stress is a solid shaft is not to exceed 40 N/ mm² when CO2- App (16) the torque transmitted as 20000 N- m. determine the minimum diameter of the shaft.
- 20. (a) Derive the equation of deflection for a simply supported beam with CO2- App (16) Uniformly Distributed Load

Or

(b) A beam of rectangular section 200 mm wide and 300 mm deep is CO2- App (16) simply supported at its ends. It carries a UDL of 9 kN/m run over the entire span of 5 m. if the value of beam material is 1×10^4 N/ mm² find the (i) slope of the beam (ii) maximum deflection (16)

U5A03