	A
Ľ	•

Dog No.					
Reg. No.:					

Question Paper Code: 99A07

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2023

Elective

Agricultural Engineering

19UAG907 - Design Of Greenhouse And Construction

(Regulation 2019)

Dur	ation: Three hours	Maximum: 100 Marks				
	Answer AL	L Questions				
	PART A - (10	x 1 = 10 Marks)				
1.	Which green house classification based on covering material					
	(a) Lean to type (b) (c)	(b) Glass glazing green house				
	(c) Active cooling green house (d) None					
2.	The most potent greenhouse gas in terms of efficiency is					
	(a) Nitrous oxide (b) Carbon di oxide (c) ChloroFluro Carbon (d) M					
3.	Which of the following is used to measure direct solar radiation					
	(a) pyrheliometer (b) actinometer) pyradiometer				
4.	Actinometer is primarily used to measureandradiation.					
	(a) infrared and ultraviolet (b) v	visible and infrared				
	(c) visible and ultraviolet (d)	(d) infrared and UV-A				
5.	LST stands for		CO3- R			
	(a) land surface temperature	(b) local standard time				
	(c) local solar temperature	(d) low surface temperature				
6.	Micro irrigation is otherwise is known as		CO3- R			
	(a) tricle irrigation (b) localized irrigatio	n (c) drip irrigation	(d) both a,b,c			
7.	Irrigation frequency of drip irrigation varie	s from	CO4- R			

(b) 1-5 days

(a) 1- 3days

(c) 1-7 days

(d) 1-10 day

8.	Emission uniformity of emitted varies upto						C	O4- R			
	(a) 75%			(1	(b) 80% (c) 90%				(d) 100%		
9.	The	time from sun	rise to sun s	set terme	ed as				C	O5- R	
	(a) s	lope	(b) day le	ength	(c) lo	ocal sol	ar time	(d) so	lar intensi	ty	
10.	In w	hich of the foll	lowing is di	rect fron	n of rei	newable	e energy		C	O5 -R	
	(a) so	olar energy	(b) tidal e	nergy	((c) geot	thermal energy	y (d)	bio energy	y	
			P	ART – E	3 (5 x 2	2 = 10M	larks)				
11.	Defi	ne Greenhouse	e .						C	O1- R	
12.	List	out the greenh	ouse structu	ral comp	ponent	S.			C	O2- R	
13.	Explain the distribution of solar radiation inside a greenhouse.							O3- R			
14.	What are the types of irrigation system?							C	O4- R		
15.	What are the components of surface drainage system?						C	O5- R			
				PART -	- C (5 z	x 16= 8	0Marks)				
16.	(a)	Explain in d site selection		the natu	ırally v	ventilato	ed greenhouse	e and its	CO1- U	(16)	
	(b)	Explain in de		-		-	ce of greenho	use and	CO1- U	(16)	
17.	(a)	Explain the components	details a	ibout tl	he flo Or	oors, f	rame and s	tructural	CO2 -U	(16)	
	(b)	Explain the advantage an		7		ouse co	overing mater	ials . its	CO2 -U	(16)	
18.	(a)	Explain the digreenhouse.	letails about	the stea	•	l unstea	ndy state analy	rsis	CO3- U	(16)	
	(b)	Explain the d	letails about	the ther	Or rmal ar	nalysis	of greenhouse		CO3 -U	(16)	
19.	(a)	Explain the c	letails about	the type	es of ir Or	rigatior	n methods.		CO4- U	(16)	
	(b)	Explain the Sprinkler Sys		out the	classif	ication	and Compo	nents of	CO4 -U	(16)	

- 20. (a) Explain the details about the materials for Pipe drainage systems. CO5- U (16)
 - (b) Explain the details about the subsurface drainage systems. CO5- U (16)