|                                                 |                                                                                        | Reg. No. :                                                                |         |           |               |       |       |       |                |              |      |
|-------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------|-----------|---------------|-------|-------|-------|----------------|--------------|------|
| Question Paper Code: R3704                      |                                                                                        |                                                                           |         |           |               |       |       |       |                |              |      |
| B.E./B.Tech. DEGREE EXAMINATION, NOV 2024       |                                                                                        |                                                                           |         |           |               |       |       |       |                |              |      |
| Third Semester                                  |                                                                                        |                                                                           |         |           |               |       |       |       |                |              |      |
| Mechanical Engineering                          |                                                                                        |                                                                           |         |           |               |       |       |       |                |              |      |
| R21UME304 – FLUID MECHANICS AND MACHINERY       |                                                                                        |                                                                           |         |           |               |       |       |       |                |              |      |
| (Regulations R2021)                             |                                                                                        |                                                                           |         |           |               |       |       |       |                |              |      |
| Dura                                            | ation: Three hours                                                                     |                                                                           |         |           |               |       | Maxir | num:  | 100 1          | Mark         | S    |
| Answer ALL Questions                            |                                                                                        |                                                                           |         |           |               |       |       |       |                |              |      |
| PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$ |                                                                                        |                                                                           |         |           |               |       |       |       |                |              |      |
| 1.                                              | The pressure less than atmospheric pressure is known as CO1- U                         |                                                                           |         |           |               |       |       | 1- U  |                |              |      |
|                                                 | (a) Suction pressure (b) Vacuum pressure (c) Negative gauge pressure (d) All of these. |                                                                           |         |           |               |       |       |       |                |              |      |
| 2.                                              | Reynolds Number for                                                                    | laminar flow is                                                           |         |           |               |       |       |       |                | CO           | 1- U |
|                                                 | (a) $\text{Re} > 4000$ (b) $\text{Re}$                                                 | e = 2000 to 4000                                                          | (c)     | Re < 20   | 000           |       | (d) N | one o | f the          | these        | •    |
| 3.                                              | Which of the following is a formula for the friction factor of circular CO1-U pipes?   |                                                                           |         |           |               |       |       |       |                |              |      |
|                                                 | (a) Re/64                                                                              | (b) 16/Re                                                                 |         | (c) 64/I  | Re            |       |       | (d) R | le/16          |              |      |
| 4.                                              | Which property of the                                                                  | hich property of the fluid accounts for the major losses in pipes? CO1- U |         |           |               |       |       |       |                |              |      |
|                                                 | (a) Density                                                                            | (b) Specific grav                                                         | vity    | (c) Vise  | cosity        |       | (d)   | Comp  | ressi          | bility       | 1    |
| 5.                                              | Dynamic viscosity (µ)                                                                  | ) has the dimension                                                       | ons as  |           |               |       |       |       |                | CO           | 1- U |
|                                                 | (a) MLT <sup>-2</sup>                                                                  | (b) $ML^{-1}T^{-1}$                                                       |         | (c) ML    | $^{-1}T^{-2}$ |       |       | (d) N | $I^{-1}L^{-1}$ | $^{I}T^{-1}$ |      |
| 6.                                              | Square root of the rati                                                                | o of inertia force                                                        | to elas | stic forc | e is calle    | ed as |       |       |                | CO           | 1- U |
|                                                 | (a) Mach's Number                                                                      | (b) Cauchy's Nu                                                           | ımber   | (c)Bo     | th a. and     | d b   |       | (d) N | lone           | of th        | ese  |
| 7.                                              | For 450m head of wat                                                                   | c 450m head of watershall be used CC                                      |         |           |               |       |       | CO    | 1- U           |              |      |
|                                                 | (a) Pelton wheel                                                                       | (b) Kaplan turbi                                                          | ne      | (c) Fran  | ncis turb     | oine  |       | (d) N | lone           | of th        | ese  |
| 8.                                              | A pressure of 25 m of                                                                  | pressure of 25 m of head of water is equal to CO1- U                      |         |           |               |       |       | 1- U  |                |              |      |
|                                                 | (a) 25 kN/m <sup>2</sup>                                                               | (b) 245kN/m <sup>2</sup>                                                  |         | (c)2500   | $kN/m^2$      |       |       | (d) 2 | .5 kN          | $J/m^2$      |      |

| 9.                          | The specific s per second ag | CO1- U                    |                |                   |  |  |  |  |  |
|-----------------------------|------------------------------|---------------------------|----------------|-------------------|--|--|--|--|--|
|                             | (a) 24.8 r.p.m               | (b) 22.8 r.p.m            | (c) 82.4 r.p.m | (d) 248 r.p.m     |  |  |  |  |  |
| 10.                         | The discharge                | CO1- U                    |                |                   |  |  |  |  |  |
|                             | (a) Increases                | (b) decreases             | (c) equal      | (d) None of these |  |  |  |  |  |
| PART - B (5 x 2= 10 Marks)  |                              |                           |                |                   |  |  |  |  |  |
| 11.                         | State Newton <sup>3</sup>    | CO1- U                    |                |                   |  |  |  |  |  |
| 12.                         | Name some m                  | CO1- U                    |                |                   |  |  |  |  |  |
| 13.                         | Mention Buck                 | CO1- U                    |                |                   |  |  |  |  |  |
| 14.                         | Explain the di               | CO1- U                    |                |                   |  |  |  |  |  |
| 15.                         | Explain the Sl               | ip of reciprocating pump. |                | CO1- U            |  |  |  |  |  |
| PART – C (5 x 16= 80 Marks) |                              |                           |                |                   |  |  |  |  |  |

- 16. (a) Calculate the dynamic viscosity of oil, which is used for CO2- App (16) lubrication between a square plate of size 0.8m X 0.8m and an inclined plane with angle of inclination 30°. The weight of the square plate is 300N and it slides down the inclined plane with a uniform velocity of 0.3m/s. The thickness of the oil film is 1.5mm
  - Or
  - (b) A 30 cm diameter pipe, conveying water, branches into two pipes CO2- App (16) of diameters 20cm and 15 cm respectively. If the average velocity in the 30cm diameter pipe is 2.5m/sec. Find the discharge in this pipe. Also find the velocity in 15 cm pipe if the average velocity in 20cm diameter pipe is 2 m/sec



17. (a) Derive Bernoulli's Equation from Euler's Equation with a neat CO2- App (16) sketch.

Or

- (b) A pipe of diameter 400 mm carries water at velocity of 25 m/s. CO2- App (16) The pressures at the points A& B are given as 29.43 N/cm<sup>2</sup> and 22.56 N/cm<sup>2</sup>respectively, while the datum head at A and B are 28 m and 30 m. Find the loss of head between A and B.
- 18. (a) The resisting force (R) of a supersonic plane during flight can be CO4- App (16) considered as dependent upon the length of aircraft (l), velocity (V), dynamic viscosity of air (μ), air density (ρ) and bulk modulus of air (K). Express the functional relationship between these variables and the resisting force using Buckingham's π Theorem.

## Or

(b) The frictional torque T of a disc of diameter (D) rotating at a CO4- App (16) speed (N) in a fluid of viscosity (μ) and density (ρ) in a turbulent flow is given by

$$T = D^5 N^2 \rho \phi \left[\frac{\mu}{D^2 N \rho}\right]$$

- 19. (a) A Pelton Wheel has a mean bucket speed of 10m/s with a jet of CO3- App (16) water flowing at the rate of 700lit/s under a head of 30m. The buckets deflect the jet through an angle of 160°. Calculate the power delivered to the runner and the hydraulic efficiency of the turbine. Assume co-efficient of velocity at 0.98.
  - Or

(b) Explain the working of Kaplan turbine with a neat sketch. CO3- App (16)

20. (a) Explain the working principle of Single stage Centrifugal Pump CO1-U (16) with neat sketch.

Or

(b) Explain with neat sketches, the working of air vessel and single CO1-U (16) acting reciprocating pump.

## **R3704**