Reg. No. :

Question Paper Code: U6703

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024

Sixth Semester

Mechanical Engineering

21UME603 FINITE ELEMENT ANALYSIS

(Regulations 2021)

Dur	ation: Three hours		Maximum: 100 Marks					
Answer ALL Questions								
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$								
1.	is a Numerical method for solving problems of Engineering and CO1 U mathematical physics							
	(a) Finite Element An	alysis	(b) Finite Element Me	ethod				
	(c) Both A&B		(d) None of the above					
2.	The number of element to be selected for discretization depends upon the CO1 U following factor is/are							
	(a) Accuracy desired (b) Size of the elements.							
	(c) Number of degree	s of freedom involved	(d) All the above.					
3.	can resist on	ly axial loads.			CO1- U			
	(a) Bar	(b) Beam	(c) Both a & b	(d) None of th	e above			
4.	Assemblage of bars is called				CO1- U			
	(a) Truss	(b) Bar	(c) Spring	(d) None of th	e above			
5.	Linear Strain Triangular Element has number of nodes. CO1-				CO1- U			
	(a) 3	(b) 6	(c) 12	(d) 24				
6.	Constant Strain Trian	gular Element has	number of nodes.		CO1- U			
	(a) 3	(b) 6	(c) 12	(d) 24				
7.	A motion which repeats itself after equal interval of time is called CO1-U							
	(a) Cycle	(b) Frequency	(c) Periodic Motion	(d) Damping				

A

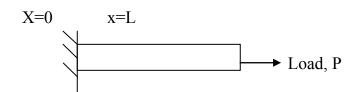
8.	Direct Method has	value.						
	(a) approximate	(b)Exact	(c)Zero	(d) All the above				
9.	Heat transfer between	CO1- U						
	(a) Conduction	(b) Convection	(c) Radiation	(d) None of the above				
10.	Generally, matter exists in state(s).			CO1- U				
	(a) Solid	(b) Liquid	(c) Gas	(d) All the above				
PART - B (5 x 2= 10 Marks)								
11.	State the three phases	CO1- U						
12.	Compare Global co-or	CO1- U						

- 13. Explain the purpose of Isoparametric ElementCO1- U
- 14. Write down the expression of Transverse vibration of beam element CO1- U
- 15. Write down the Finite element equation for 1-D Heat Conduction with free end CO1-U Convection.

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

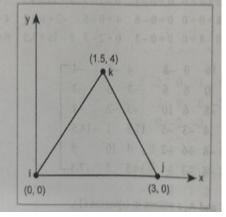
16. (a) The following differential equation is available for a physical CO4 Ana (16) phenomenon.

 $\frac{d^2y}{dx^2} + 50 = 0 \quad , 0 \le x \le 10$


and the trial function is $y = a_1 x(10-x)$ with boundary conditions as y(0) = 0 and y(10) = 0. Compare the value of the parameter a_1 by the following methods.

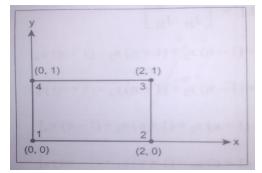
- (i) Point Collocation Method
- (ii) Sub-domain Collocation Method
- (iii) Least Squares Method

Galerkin's Method

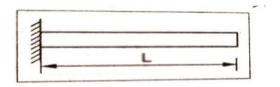

Or

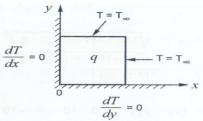
(b) A bar of uniform cross section is clamped at one end and left free CO4 - Ana (16) at the other end and it is subjected to a uniform axial load P as shown in Fig. Analyze the displacement and stress in a bar by using two terms polynomial and three terms polynomial, compare with exact solutions.

- 17. (a) Using two finite elements, find the stress distribution in a CO2- App (16) uniformly tapering bar of circular cross- sectional area 3 cm² and 2 cm² at their ends, length 100 mm, subjected to an axial tensile load of 50 N at smaller end and fixed at larger end. Take the value of Young's modulus $E=2x10^5$ N/mm².
 - Or
 - (b) Derivate the displacement function u and shape function N for CO2- App (16) one dimensional Linear bar element based on global co-ordinate approach.
- 18. (a) Determine the stiffness matrix for the CST element shown in CO2 App (16) figure.


The co-ordinates are given in units of millimeters. Assume plane stress conditions. Take E=2.1 x 10^5 N/mm², v=0.25 and t=10 mm.

- (b) A fournoded Rectangular element as shown in figure. Determine CO2 App (16) the following:
 - (i) Jacobian Matrix
 - (ii) Strain-Displacement Matrix.
 - (iii) Element Stresses


Take $E = 2x10^5 \text{ N/mm}^2$, v = 0.25, $u = [0, 0, 0.003, 0.004, 0.006, 0.004, 0, 0]^T$, $\mathcal{E} = 0, \eta = 0$ Assume plane stress condition.


19. (a) Analyze the eigen values and natural frequencies of a system CO4- Ana (16) whose stiffness and mass matrices are given below:

$$[K] = \frac{2AE}{L} \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix}, m = \frac{\rho A L}{12} \begin{bmatrix} 6 & 1 \\ 1 & 2 \end{bmatrix}$$

Or

(b) Consider a uniform cross-section bar as shown in figure of length CO4- Ana (16)
"L" made up of a material whose Young's modulus and density are given by E and ρ. Estimate the natural frequencies of axial vibration of the bar using both lumped and consistent mass matrix.

- 20. (a) A steel rod of diameter d= 2cm, Length L=5cm and thermal CO6 Eva (16) conductivity k = 50W/m°C is exposed at one end to a constant temperature of 320°C. The other end is in ambient air of temperature 20°C with a convection coefficient of h = 100 W/m²°C. Evaluate the temperature at the midpoint of the rod.
 - Or
 - (b) Evaluate the temperature distribution in a square region with CO6 Eva (16) uniform energy generation as shown in figure. Assume that there is no temperature variation in the z -direction. Take k=30W/cm°C, l=10cm, T_w=50°C, q=100W/cm³.

