Reg. No.:						
1106.1						

Question Paper Code: U6701

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2024

Sixth Semester

Mechanical Engineering

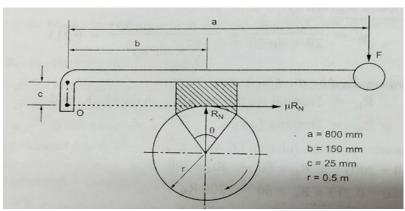
21UME601 - DESIGN OF TRANSMISSION SYSTEMS

		(Regulation	ns 2021)					
Dur	ation: Three hours		N	Iaximum: 100 Marks				
		Answer ALL	Questions					
		PART A - (10 x	1 = 10 Marks)					
1.	The materials used for V		CO1- U					
	(a) Wrought iron	(b) Cast steel	(c) Alloy Steel	(d) All the above				
2.	is a movable be tension in the drive.	aring to regulate the	chain slag and maintain	required CO1- U				
	(a) Slack adjuster	(b) Chain Housing	(c) Sprockets	(d) None of these				
3.	Which of the following	ich of the following type of drives transmit power by friction?						
	(a) spur gear drive	(b) chain drive	(c)worm gear drive (c	d) belt drive				
4.	Which of the following	gears have zero axial	thrust?	CO1- U				
	(a) Herringbone gears	(b) bevel gears	(c) worm gears	(d) helical gears				
5.	The number of starts on worm for a velocity ratio of 40 is							
	(a) Single	(b) double	(c) triple	(d) quadruple				
6.	Worm gears are widely	used when		CO1- U				
	(a) velocity ratio is high	l	(b) space is limite	(b) space is limited				
	(c) axes of shafts are no	n-intersecting	(d) all the three	(d) all the three				
7.	When the spindle speeds are arranged in GP, then the ratio between the two adjacent speeds is known as							
	(a) Harmonic progression	on	(b) logarithmic pr	(b) logarithmic progression				
	(c) Arithmetic progressi	on	(d) step ratio	(d) step ratio				

8.	The	structural form	ıla for a 9 speed gear box	is		C	O1- U		
	(a) $3(3)*3(1)$ (b) $3(1)*3(3)$ (c) $3(3)*3(3)$					(d) $3(1)*3(1)$			
9.	The	brake used in ra	ilway coaches is			C	O1- U		
	(a) s	shoe brake	(b) block brake	(c) band brake	(d) di	sk brake			
10	The cam follower extensively used in air-craft engines is						O1- U		
	(a) I	Knife edge follo	llower						
	(c) Spherical faced follower (d) Ro				oller follower				
			PART – B (5 x	2= 10 Marks)					
11	Exp	lain the stresses	induced in a wire rope?			CO1- U			
12	Mer	ntion the interfer	ence in Involute profile			CO1- U			
13	List out the design procedure for bevel gear						CO1- U		
14							CO1- U		
15							CO1- U		
			PART – C (5	x 16= 80 Marks)					
16	(a)	electric motor	ole a chain drive to operate at 900 rpm; The compress minimum center distance s Or	sor is to be run at a spee		CO2- App	(16)		
	(b)	line shaft as 12	be belt to transmit 10 kw at 200 rpm. The diameter of the shaft from the engine of the engine of the shaft from the engine of t	the engine pulley is 60		CO2- App	(16)		
17	(a)	speed of 800 and depth involute are made of st	r gear drive required to rpm. The velocity ratio 3 with 18 teeth on the pini eel with a maximum safe m shock condition.	.5 : 1. The teeth are 20 on. Both the pinion and	O full d gear	CO3- App	(16)		
	(b)	specification: Speed red Pressure A Helix ang Design Co Design Bo	gear to transmit 7.5 kW a fuction = 3 Angle = 20^{0} le = 10^{0} empressive stress = 9020° ending Stress = 2100 Kg/o asticity of materials = 2.05	Kg/cm ²	owing	CO3- App	(16)		

18 (a) Compute the various worm gear terminology. The worm gear drive to CO3- App (16) transmit 22.5 kW from a worm at 1440 rpm. The speed reduction ratio is 24:1. Design the drive so as to have an efficiency of 85%.

Or


- (b) Design a cast iron bevel gear drive for a pillar drilling machine to CO3-App (16) transmit 1875 W at 800 rpm to a spindle at 400 rpm. The gear is to work for 40 hours per week for 3 years. Pressure angle is 20⁰
- 19 (a) Design and analyze a Nine speed gearbox for a milling machine with CO5- Ana (16) Speeds rangingfrom 56–900 rpm. The output speed is 720 rpm; Make a neat sketch of the gear box. Indicate the number of teeth on all the gears and their speeds.

Or

- (b) Design and analyze a gearbox is to be designed to provide 12 output CO5- Ana (16) speeds ranging from 160 to 2000rpm. The input speed of the motor is 1600rpm. Choosing a standard speed ratio, construct the speed diagram and the kinematic arrangement.
- 20 (a) A multi plate disc clutch transmits 55kW of power at 1800rpm CO5- Ana (16) coefficient of friction for the friction surfaces is 0.1.Axial intensity at pressure is not to exceed 160kN/m². The internal radius is 80mm and is 0.7 times the external radius. Find the number of plates needed to transmit the required torque.

Or

(b) The diameter of the brake drum of a single block is 1m shown in CO5- Ana (16) fig. It sustains 240 N-m of torque at 400rpm. The coefficient of friction is 0.32. Determine the required force to be applied when the rotation of the drum is a) clockwise, b) counter clockwise, and the angle of contact (i) 35deg and (ii) 100deg.
Given that a = 800mm, b = 150mm and c = 25mm. Also find the new values of 'c' for self-locking of the brake.

