A		Reg. No.	:				
		Question	Paper Code: 9	6701			
	B.E. /	B.Tech. DEGREE	EXAMINATION,	, NOV 20	24		
		Sixt	h Semester				
		Mechanie	cal Engineering				
	19UME	E601 - DESIGN O	F TRANSMISSION	N SYSTE	CMS		
		(Regul	ations 2019)				
Dur	ation: Three hours			Maxim	um: 100]	Marks	
		Answer	ALL Questions				
		PART A - (1	10 x 1 = 10 Marks)				
1.	is a movable bearing to regulate the chain slag and maintain required tension in the drive					С	01 - U
	(a) Slack adjuster		(b) Chain Housing				
	(c) Sprockets		(d) None of these				
2.	drive design is more complicated and cannot be used for larger centre distance.					CO	D1- U
	(a)Flat belt	(b) V-belt	(c) Wire rope	e (d	l)Chain d	lrive	
3.	Spur gear design no	rmally begins with	selecting this:			CO	D1- U
	(a) Rack size	(b)Tooth size	(c)Gear size		(d) Pitch diameter		eter
4.	Which of the following type of drives transmit power by friction?						
	(a) spur gear drive	(b)chain drive	(c)worm gear dri	ive	(d) belt	drive	
5.	In a concrete mixer generally	r, the bevel gears	for rotating the d	rum are		CO	D1- U
	(a) Casting (b)	forging	(c)hobbing	(d) s	shaping		
6.	The worm helix ang	le is the of	the worm lead angl	le.		CO	D1- U
	(a) Complement	(b) Half	(c) Double	;	(d) Sup	plemer	nt
7.	In gear box design, for stable operation the speed ratio of CO1- U any stage should not be greater than						
	(a) 5	(b)6	(c)7		(d) 8		

8.	The	structural formula f	CO1- U									
	(a) 3	(3)*3(1)	(b) 3(1)* 3(3)	(c) $3(3)^* 3(3)$	(d) 3(1)* 3(1)							
9.	The	clutch used in truck	CO1- U	J								
	(a) multi-plate clutch			(b)single plate clutch)single plate clutch							
	(c)cone clutch			(d) centrifugal clutch	(d) centrifugal clutch							
10.	The	cam follower exten	CO1- U	J								
	(a) k	Knife edge follower		(b)Flat faced follower								
	(c) S	Spherical faced follo	ower	(d) Roller follower								
PART – B (5 x 2= 10 Marks)												
11.	Exp	lain the Law of Belt	CO1- U									
12.	Exp	lain working depth	CO1- U									
13.	Exp	lain the Herringbon	CO1- U									
14.	Exp	lain the function of	CO1- U									
15.	Exp	lain the function of	CO1- U									
			PART - C (5)	x 16= 80 Marks)								
16.	(a)	Design and analyz at 1500 rpm to a centre distance is 2 750 mm.	CO5- Ana (16))								
	(h)	Design and analyz	drive to operate a	CO5-Ana (16))							
		compressor from a compressor is to be centre distance sho	a 15 kW electric m e run at a speed of ould be 550mm.	otor at 900 rpm; The 300 rpm; The minimum	(10)	,						
17.	(a)	Design a spur gea reduction is 2.5; and Cast-iron Gr 20deg and workin the design and indu	ar to transmit 22. Material for pinio 30 respectively. g life of the gears uced stresses. Justi	5 kW at 900 rpm; speed on and wheel are C15 steel Take pressure angle of s as 10000 hrs. Compare ify the result.	CO4- U (16))						

- (b) A helical gear with 30° helix angle has to transmit 35kW at CO4-U (16) 1500 rpm. With a speed reduction ratio 2.5. If the pinion has 24 teeth, determine the necessary module, pitch diameter and face width for 20° full depths the teeth. Assume 15Ni 2Cr 1 Mo 15 material for both pinion and wheel. Compare the design and induced stresses. Justify the result.
- 18. (a) Design a worm gear drive to transmit 20 HP from a worm at CO3- App (16) 1440 rpm to the worm wheel the speed of the worm wheel should 40 (+ or -) 2% rpm

Or

- (b) Design a Bevel gear drive to transmit 7.5 kW at 1440rpm. Gear CO3- App (16) ratio is 3; pinion and gear are made of C45 steel; Life of gear 10,000hrs.
- 19. (a) Design and analyzea12 speed gear box. The speed range CO4- Ana (16) required 100 to355 rpm. Draw the ray diagram, kinematic arrangement and calculate the number of teeth on eachgear.

Or

- (b) Design and analyze anine speed gearbox for a milling machine CO4- Ana (16) with speeds ranging from56–900rpm. The output speedis720rpm; Make an neat sketch of the gearbox. Indicate the number of teeth on all the gears and their speeds.
- 20. (a) Classify the types of inventories and explain the about the CO5- App (16) purpose of holding stack.

Or

(b) State about ABC analysis. Explain its significance in the CO5- App (16) inventory control with a suitable example.