	Reg. No. :									
Question Paper Code: 97702										
B.E./B.Tech. DEGREE EXAMINATION, NOV 2024										
Seventh Semester										
Mechanical Engineering										
19UME702 – FINITE ELEMENT ANALYSIS										
(Regulation 2019)										
Duration: Three hours			Maximum: 100 Marks							
Answer ALL Questions										
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$										
1 is a Numerical method for solving problems of Engineering and mathematical physics.								CO1- U		
(a) Finite Element Analysis			(b) Finite Element Method							
(c) Both (a) & (b)			(d) none of the above							
2. The art of subdividing a structure into a convenient number of smaller element is CO1- U known as										
(a) Non – Structural Problems			(b) Structural Problems							
(c) Discretization of structure			(d) None of the above							
3 is a force acting at a particular point which causes displacement.								CO1- U		
(a) Traction force	(b) Body force	(c)) Point	load		(d) No	ne of	f the above	
4. Assemblage of bars is called CO1- U								CO1- U		
(a) Truss	(a) Truss (b) Beams				(d) None of the ab				e	
5. Linear Strain Triangular Element has number of nodes.								CO1- U		
(a) 3	(b)6	(c)12	2			(d) 24			
6. In plane strain analysis								CO1- U		
(a) $\rho_z = 0$ (b) $\gamma_{xz} = 0$ (c) $\gamma_{yz} = 0$					((d) All of the above				
7 A motion which repeats itself after equal interval of time is called									CO1- U	
(a) Cycle (b)	ycle (b) Frequency (c) Counter flow					(d) Damping				

8 The causes of vibration is/are

(c) Elastic Nature (a) Winds (b) Earthquakes (d) All of the above 9 In non-structural problems ______ at each nodal point is obtained CO1- U (a) Displacement (b) Temperature (c) Stress (d) Strain 10 ______ is imaginary line that connects a series of points CO1- U (a) Path Line (b) Stream Line (c) Inviscid Flow (d) None of the above

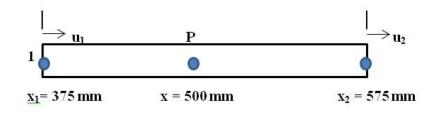
CO1- U

$$PART - B (5 \times 2 = 10 \text{Marks})$$

- 11Explain the Aspect Ratio.CO1- U
- 12Explain Degrees of freedom.CO1- U13Write down the stress-strain relationship matrix for plane strain condition.CO1- U
- 14 State difference between Direct and Iterative methods for solving system of CO1- U equations.
- 15 Write down the expression for stiffness matrix in 2D fluid mechanics. CO1- U

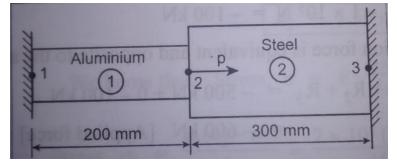
$$PART - C (5 \times 16 = 80 \text{ Marks})$$

16 (a) The following differential equation is available for a physical CO2-App (16) phenomenon

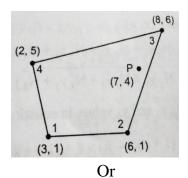

 $\frac{d^2y}{dx^2} - 10 x^2 = 5; \qquad 0 \le x \le 1$

with boundary conditions as y(0) = 0 and y(1)= 0

By using Galerkins method of weighted residuals to find an approximate solution of the above different equation and also compare with exact solution.


Or

- (b) A simply supported beam subjected to Uniformly Distributed Load CO4- App (16) over entire span. Analyze the bending moment and deflection at mid-span by using Rayleigh Ritz method and compare with exact solution.
- 17 (a) Consider a bar as shown in figure. Cross-sectional area of the bar is CO2- App (16) 750mm² and Young's Modulus is 2 X 10⁵ N/mm². If u₁=0.5mm and u₂ = 0.625mm, calculate the following:
 (i) Displacement at point, P
 (ii) Strain, ε
 - (ii) Strain, c (iii) Stress, σ
 - (iii) Suess, 0
 - (iv) Strain Energy, U
 - (v) Element Stiffness Matrix [K]



Or

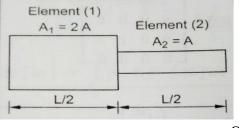
- (b) An axial load of $4x10^5$ N is applied at 30° C to the rod as shown in CO2- App (16) the figure. The temperature is then raised to 60° C. Calculate the following:
 - (i) Assemble the **K** and **F** matrices
 - (ii) Nodal Displacements
 - (iii) Stresses in each material
 - (iv) Reactions at each nodal point

18 (a) For the Isoparametric quadrilateral element shown in figure, CO2- App (16) determine the local co-ordinates of the point P which has Cartesian co-ordinates (7,4).



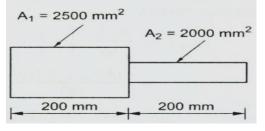
(b) Consider a quadrilateral element as shown in figure. The co-ordinates CO2- App (16)

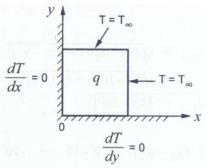
are $\mathcal{E}=0.5$ and $\eta=0.5$. Evaluate


(i) Jacobian Matrix

(ii) Strain-Displacement Matrix.

Or


19 (a) Compare the **natural frequencies** of longitudinal vibration of the CO4- Ana (16) unconstrained stepped bar as shown in the figure.



(b) Compare the eigen values and frequencies for the stepped bar as CO4- Ana (16) shown in the figure.

Take, Young's modulus $E = 2 \times 10^5 \text{ N/mm}^2$, Unit weight Density = 0.8 x 10⁻⁴ N/mm³

20 (a) Evaluate the temperature distribution in a square region with CO6-App (16) uniform energy generation as shown in figure. Assume that there is no temperature variation in the z-direction. Take k=30W/cm°C, l=10cm, T_{∞} =50°C, q=100W/cm³.

(b) A steel rod of diameter d= 2 cm, Length L=5 cm and thermal CO6- App (16) conductivity $k = 50W/m^{\circ}C$ is exposed at one end to a constant temperature of $320^{\circ}C$. The other end is in ambient air of temperature $20^{\circ}C$ with a convection coefficient of h = 100 $W/m^{2\circ}C$. Evaluate the temperature at the midpoint of the rod.